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Cloud-init is the industry standard multi-distribution method for cross-platform cloud instance initialization. It is
supported across all major public cloud providers, provisioning systems for private cloud infrastructure, and bare-
metal installations.

Cloud instances are initialized from a disk image and instance data:

• Cloud metadata

• User data (optional)

• Vendor data (optional)

Cloud-init will identify the cloud it is running on during boot, read any provided metadata from the cloud and initialize
the system accordingly. This may involve setting up the network and storage devices to configuring SSH access key
and many other aspects of a system. Later on the cloud-init will also parse and process any optional user or vendor
data that was passed to the instance.

Getting Started 1
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CHAPTER 1

Getting help

Having trouble? We would like to help!

• Try the FAQ – its got answers to some common questions

• Ask a question in the #cloud-init IRC channel on Freenode

• Join and ask questions on the cloud-init mailing list

• Find a bug? Report bugs on Launchpad

1.1 Availability

Below outlines the current availability of cloud-init across distributions and clouds, both public and private.

Note: If a distribution or cloud does not show up in the list below contact them and ask for images to be generated
using cloud-init!

1.1.1 Distributions

Cloud-init has support across all major Linux distributions, FreeBSD, NetBSD and OpenBSD:

• Ubuntu

• SLES/openSUSE

• RHEL/CentOS

• Fedora

• Gentoo Linux

• Debian

• ArchLinux

3
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• FreeBSD

• NetBSD

• OpenBSD

1.1.2 Clouds

Cloud-init provides support across a wide ranging list of execution environments in the public cloud:

• Amazon Web Services

• Microsoft Azure

• Google Cloud Platform

• Oracle Cloud Infrastructure

• Softlayer

• Rackspace Public Cloud

• IBM Cloud

• Digital Ocean

• Bigstep

• Hetzner

• Joyent

• CloudSigma

• Alibaba Cloud

• OVH

• OpenNebula

• Exoscale

• Scaleway

• CloudStack

• AltCloud

• SmartOS

Additionally, cloud-init is supported on these private clouds:

• Bare metal installs

• OpenStack

• LXD

• KVM

• Metal-as-a-Service (MAAS)

4 Chapter 1. Getting help
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1.2 Boot Stages

In order to be able to provide the functionality that it does, cloud-init must be integrated into the boot in fairly controlled
way. There are five stages to boot:

1. Generator

2. Local

3. Network

4. Config

5. Final

1.2.1 Generator

When booting under systemd, a generator will run that determines if cloud-init.target should be included in the boot
goals. By default, this generator will enable cloud-init. It will not enable cloud-init if either:

• The file /etc/cloud/cloud-init.disabled exists

• The kernel command line as found in /proc/cmdline contains cloud-init=disabled. When running
in a container, the kernel command line is not honored, but cloud-init will read an environment variable named
KERNEL_CMDLINE in its place.

Again, these mechanisms for disabling cloud-init at runtime currently only exist in systemd.

1.2.2 Local

systemd service cloud-init-local.service
runs as soon as possible with / mounted read-write
blocks as much of boot as possible, must block network
modules none

The purpose of the local stage is to:

• locate “local” data sources.

• apply networking configuration to the system (including “Fallback”)

In most cases, this stage does not do much more than that. It finds the datasource and determines the network config-
uration to be used. That network configuration can come from:

• datasource: cloud provided network configuration via metadata

• fallback: cloud-init’s fallback networking consists of rendering the equivalent to “dhcp on eth0”, which was
historically the most popular mechanism for network configuration of a guest

• none: network configuration can be disabled by writing the file /etc/cloud/cloud.cfg with the content:
network: {config: disabled}

If this is an instance’s first boot, then the selected network configuration is rendered. This includes clearing of all
previous (stale) configuration including persistent device naming with old mac addresses.

This stage must block network bring-up or any stale configuration might already have been applied. That could have
negative effects such as DHCP hooks or broadcast of an old hostname. It would also put the system in an odd state to
recover from as it may then have to restart network devices.

1.2. Boot Stages 5
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Cloud-init then exits and expects for the continued boot of the operating system to bring network configuration up as
configured.

Note: In the past, local data sources have been only those that were available without network (such as ‘ConfigDrive’).
However, as seen in the recent additions to the DigitalOcean datasource, even data sources that require a network can
operate at this stage.

1.2.3 Network

systemd service cloud-init.service
runs after local stage and configured networking is up
blocks as much of remaining boot as possible
modules cloud_init_modules in /etc/cloud/cloud.cfg

This stage requires all configured networking to be online, as it will fully process any user-data that is found. Here,
processing means:

• retrieve any #include or #include-once (recursively) including http

• decompress any compressed content

• run any part-handler found.

This stage runs the disk_setup and mounts modules which may partition and format disks and configure mount
points (such as in /etc/fstab). Those modules cannot run earlier as they may receive configuration input from
sources only available via network. For example, a user may have provided user-data in a network resource that
describes how local mounts should be done.

On some clouds such as Azure, this stage will create filesystems to be mounted, including ones that have stale (previous
instance) references in /etc/fstab. As such, entries /etc/fstab other than those necessary for cloud-init to run
should not be done until after this stage.

A part-handler will run at this stage, as will boot-hooks including cloud-config bootcmd. The user of this function-
ality has to be aware that the system is in the process of booting when their code runs.

1.2.4 Config

systemd service cloud-config.service
runs after network
blocks nothing
modules cloud_config_modules in /etc/cloud/cloud.cfg

This stage runs config modules only. Modules that do not really have an effect on other stages of boot are run here.

1.2.5 Final

systemd service cloud-final.service
runs as final part of boot (traditional “rc.local”)
blocks nothing
modules cloud_final_modules in /etc/cloud/cloud.cfg

6 Chapter 1. Getting help
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This stage runs as late in boot as possible. Any scripts that a user is accustomed to running after logging into a system
should run correctly here. Things that run here include

• package installations

• configuration management plugins (puppet, chef, salt-minion)

• user-scripts (including runcmd).

For scripts external to cloud-init looking to wait until cloud-init is finished, the cloud-init status subcommand
can help block external scripts until cloud-init is done without having to write your own systemd units dependency
chains. See status for more info.

1.3 CLI Interface

For the latest list of subcommands and arguments use cloud-init’s --help option. This can be used against cloud-init
itself or any of its subcommands.

$ cloud-init --help
usage: /usr/bin/cloud-init [-h] [--version] [--file FILES] [--debug] [--force]

{init,modules,single,query,dhclient-hook,features,analyze,
→˓devel,collect-logs,clean,status}

...

optional arguments:
-h, --help show this help message and exit
--version, -v show program's version number and exit
--file FILES, -f FILES

additional yaml configuration files to use
--debug, -d show additional pre-action logging (default: False)
--force force running even if no datasource is found (use at

your own risk)

Subcommands:
{init,modules,single,query,dhclient-hook,features,analyze,devel,collect-logs,clean,

→˓status}
init initializes cloud-init and performs initial modules
modules activates modules using a given configuration key
single run a single module
query Query standardized instance metadata from the command

line.
dhclient-hook Run the dhclient hook to record network info.
features list defined features
analyze Devel tool: Analyze cloud-init logs and data
devel Run development tools
collect-logs Collect and tar all cloud-init debug info
clean Remove logs and artifacts so cloud-init can re-run.
status Report cloud-init status or wait on completion.

The rest of this document will give an overview of each of the subcommands.

1.3.1 analyze

Get detailed reports of where cloud-init spends its time during the boot process. For more complete reference see
analyze.

Possible subcommands include:

1.3. CLI Interface 7
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• blame: report ordered by most costly operations

• dump: machine-readable JSON dump of all cloud-init tracked events

• show: show time-ordered report of the cost of operations during each boot stage

• boot: show timestamps from kernel initialization, kernel finish initialization, and cloud-init start

1.3.2 clean

Remove cloud-init artifacts from /var/lib/cloud to simulate a clean instance. On reboot, cloud-init will re-run
all stages as it did on first boot.

• –logs: optionally remove all cloud-init log files in /var/log/

• –reboot: reboot the system after removing artifacts

1.3.3 collect-logs

Collect and tar cloud-init generated logs, data files, and system information for triage. This subcommand is integrated
with apport.

Logs collected include:

• /var/log/cloud-init.log

• /var/log/cloud-init-output.log

• /run/cloud-init

• /var/lib/cloud/instance/user-data.txt

• cloud-init package version

• dmesg output

• journalctl output

Note: Ubuntu users can file bugs with ubuntu-bug cloud-init to automatically attach these logs to a bug
report

1.3.4 devel

Collection of development tools under active development. These tools will likely be promoted to top-level subcom-
mands when stable.

Do NOT rely on the output of these commands as they can and will change.

Current subcommands:

• schema: a #cloud-config format and schema validator. It accepts a cloud-config yaml file and annotates
potential schema errors locally without the need for deployment. Schema validation is work in progress and
supports a subset of cloud-config modules.

• render: use cloud-init’s jinja template render to process #cloud-config or custom-scripts, injecting any vari-
ables from /run/cloud-init/instance-data.json. It accepts a user-data file containing the jinja
template header ## template: jinja and renders that content with any instance-data.json variables
present.

8 Chapter 1. Getting help
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1.3.5 features

Print out each feature supported. If cloud-init does not have the features subcommand, it also does not support any
features described in this document.

$ cloud-init features
NETWORK_CONFIG_V1
NETWORK_CONFIG_V2

1.3.6 init

Generally run by OS init systems to execute cloud-init’s stages init and init-local. See Boot Stages for more info.
Can be run on the commandline, but is generally gated to run only once due to semaphores in /var/lib/cloud/
instance/sem/ and /var/lib/cloud/sem.

• –local: run init-local stage instead of init

1.3.7 modules

Generally run by OS init systems to execute modules:config and modules:final boot stages. This executes cloud config
Modules configured to run in the init, config and final stages. The modules are declared to run in various boot stages
in the file /etc/cloud/cloud.cfg under keys:

• cloud_init_modules

• cloud_config_modules

• cloud_init_modules

Can be run on the command line, but each module is gated to run only once due to semaphores in /var/lib/
cloud/.

• –mode [init|config|final]: run modules:init, modules:config or modules:final cloud-init stages. See Boot Stages
for more info.

1.3.8 query

Query standardized cloud instance metadata crawled by cloud-init and stored in /run/cloud-init/
instance-data.json. This is a convenience command-line interface to reference any cached configuration
metadata that cloud-init crawls when booting the instance. See Instance Metadata for more info.

• –all: dump all available instance data as json which can be queried

• –instance-data: optional path to a different instance-data.json file to source for queries

• –list-keys: list available query keys from cached instance data

• –format: a string that will use jinja-template syntax to render a string replacing

• <varname>: a dot-delimited variable path into the instance-data.json object

Below demonstrates how to list all top-level query keys that are standardized aliases:

$ cloud-init query --list-keys
_beta_keys
availability_zone
base64_encoded_keys

(continues on next page)
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(continued from previous page)

cloud_name
ds
instance_id
local_hostname
platform
public_ssh_keys
region
sensitive_keys
subplatform
userdata
v1
vendordata

Below demonstrates how to query standardized metadata from clouds:

% cloud-init query v1.cloud_name
aws # or openstack, azure, gce etc.

# Any standardized instance-data under a <v#> key is aliased as a top-level key for
→˓convenience.
% cloud-init query cloud_name
aws # or openstack, azure, gce etc.

# Query datasource-specific metadata on EC2
% cloud-init query ds.meta_data.public_ipv4

Note: The standardized instance data keys under v# are guaranteed not to change behavior or format. If using top-
level convenience aliases for any standardized instance data keys, the most value (highest v#) of that key name is what
is reported as the top-level value. So these aliases act as a ‘latest’.

This data can then be formatted to generate custom strings or data:

# Generate a custom hostname fqdn based on instance-id, cloud and region
% cloud-init query --format 'custom-{{instance_id}}.{{region}}.{{v1.cloud_name}}.com'
custom-i-0e91f69987f37ec74.us-east-2.aws.com

1.3.9 single

Attempt to run a single named cloud config module.

• –name: the cloud-config module name to run

• –frequency: optionally override the declared module frequency with one of (always|once-per-instance|once)

The following example re-runs the cc_set_hostname module ignoring the module default frequency of once-per-
instance:

$ cloud-init single --name set_hostname --frequency always

Note: Mileage may vary trying to re-run each cloud-config module, as some are not idempotent.

10 Chapter 1. Getting help
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1.3.10 status

Report whether cloud-init is running, done, disabled or errored. Exits non-zero if an error is detected in cloud-init.

• –long: detailed status information

• –wait: block until cloud-init completes

Below are examples of output when cloud-init is running, showing status and the currently running modules, as well
as when it is done.

$ cloud-init status
status: running

$ cloud-init status --long
status: running
time: Fri, 26 Jan 2018 21:39:43 +0000
detail:
Running in stage: init-local

$ cloud-init status
status: done

$ cloud-init status --long
status: done
time: Wed, 17 Jan 2018 20:41:59 +0000
detail:
DataSourceNoCloud [seed=/var/lib/cloud/seed/nocloud-net][dsmode=net]

1.4 FAQ

1.4.1 How do I get help?

Having trouble? We would like to help!

• First go through this page with answers to common questions

• Use the search bar at the upper left to search these docs

• Ask a question in the #cloud-init IRC channel on Freenode

• Join and ask questions on the cloud-init mailing list

• Find a bug? Check out the Reporting Bugs topic for how to report one

1.4.2 Where are the logs?

Cloud-init uses two files to log to:

• /var/log/cloud-init-output.log: captures the output from each stage of cloud-init when it runs

• /var/log/cloud-init.log: very detailed log with debugging output, detailing each action taken

• /run/cloud-init: contains logs about how cloud-init decided to enable or disable itself, as well as what plat-
forms/datasources were detected. These logs are most useful when trying to determine what cloud-init ran or
did not run.

1.4. FAQ 11

https://launchpad.net/~cloud-init


cloud-init, Release 20.2

Be aware that each time a system boots, new logs are appended to the files in /var/log. Therefore, the files may have
more than one boot worth of information present.

When reviewing these logs look for any errors or Python tracebacks to check for any errors.

1.4.3 Where are the configuration files?

Cloud-init config is provided in two places:

• /etc/cloud/cloud.cfg

• /etc/cloud/cloud.cfg.d/*.cfg

These files can define the modules that run during instance initialization, the datasources to evaluate on boot, and other
settings.

1.4.4 Where are the data files?

Inside the /var/lib/cloud/ directory there are two important subdirectories:

instance

The /var/lib/cloud/instance directory is a symbolic link that points to the most recenlty used instance-id directory.
This folder contains the information cloud-init received from datasources, including vendor and user data. This can be
helpful to review to ensure the correct data was passed.

It also contains the datasource file that containers the full information about what datasource was identified and used
to setup the system.

Finally, the boot-finished file is the last thing that cloud-init does.

data

The /var/lib/cloud/data directory contain information related to the previous boot:

• instance-id: id of the instance as discovered by cloud-init. Changing this file has no effect.

• result.json: json file will show both the datasource used to setup the instance, and if any errors occured

• status.json: json file shows the datasource used and a break down of all four modules if any errors occured and
the start and stop times.

1.4.5 What datasource am I using?

To correctly setup an instance, cloud-init must correctly identify the cloud that it is on. Therefore knowing what
datasource is used on an instance launch can help aid in debugging.

To find what datasource is getting used run the cloud-id command:

$ cloud-id
nocloud

If the cloud-id is not what is expected, then running the ds-identify script in debug mode and providing that in a bug
can help aid in resolving any issues:

12 Chapter 1. Getting help
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$ sudo DEBUG_LEVEL=2 DI_LOG=stderr /usr/lib/cloud-init/ds-identify --force

The force parameter allows the command to be run again since the instance has already launched. The other options
increase the verbosity of logging and put the logs to STDERR.

1.4.6 How can I re-run datasource detection and cloud-init?

If a user is developing a new datasource or working on debugging an issue it may be useful to re-run datasource
detection and the initial setup of cloud-init.

To do this, force ds-identify to re-run, clean up any logs, and re-run cloud-init:

$ sudo DI_LOG=stderr /usr/lib/cloud-init/ds-identify --force
$ sudo cloud-init clean --logs
$ sudo cloud-init init --local
$ sudo cloud-init init

1.4.7 How can I debug my user data?

Two of the most common issues with user data, that also happens to be cloud-config is:

1. Incorrectly formatted YAML

2. First line does not contain #cloud-config

To verify your YAML, we do have a short script called validate-yaml.py that can validate your user data offline.

Another option is to run the following on an instance when debugging:

$ sudo cloud-init query userdata > user-data.yaml
$ cloud-init devel schema -c user-data.yaml --annotate

As launching instances in the cloud can cost money and take a bit longer, sometimes it is easier to launch instances
locally using Multipass or LXD:

Multipass

Multipass is a cross-platform tool to launch Ubuntu VMs across Linux, Windows, and macOS.

When a user launches a Multipass VM, user data can be passed by adding the –cloud-init flag and the appropriate
YAML file containing user data:

$ multipass launch bionic --name test-vm --cloud-init userdata.yaml

Multipass will validate the YAML syntax of the cloud-config file before attempting to start the VM! A nice addition
to help save time when experimenting with launching instances with various cloud-configs.

Multipass only supports passing user-data and only as YAML cloud-config files. Passing a script, a MIME archive, or
any of the other user-data formats cloud-init supports will result in an error from the YAML syntax validator.

LXD

LXD offers a streamlined user experience for using linux system containers. With LXD, a user can pass:

• user data

1.4. FAQ 13
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• vendor data

• metadata

• network configuration

The following initializes a container with user data:

$ lxc init ubuntu-daily:bionic test-container
$ lxc config set test-container user.user-data - < userdata.yaml
$ lxc start test-container

To avoid the extra commands this can also be done at launch:

$ lxc launch ubuntu-daily:bionic test-container --config=user.user-data="$(cat
→˓userdata.yaml)"

Finally, a profile can be setup with the specific data if a user needs to launch this multiple times:

$ lxc profile create dev-user-data
$ lxc profile set dev-user-data user.user-data - < cloud-init-config.yaml
$ lxc launch ubuntu-daily:bionic test-container -p default -p dev-user-data

The above examples all show how to pass user data. To pass other types of configuration data use the config option
specified below:

Data Config Option
user data user.user-data
vendor data user.vendor-data
metadata user.meta-data
network config user.network-config

See the LXD Instance Configuration docs for more info about configuration values or the LXD Custom Network
Configuration document for more about custom network config.

1.4.8 Where can I learn more?

Below are some videos, blog posts, and white papers about cloud-init from a variety of sources.

• Cloud Instance Initialization with cloud-init (Whitepaper)

• cloud-init Summit 2018

• cloud-init - The cross-cloud Magic Sauce (PDF)

• cloud-init Summit 2017

• cloud-init - Building clouds one Linux box at a time (Video)

• cloud-init - Building clouds one Linux box at a time (PDF)

• Metadata and cloud-init

• The beauty of cloud-init

• Introduction to cloud-init
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1.5 Reporting Bugs

The following documents:

1) How to collect information for reporting bugs

2) How to file bugs to the upstream cloud-init project or for distro specific packages

1.5.1 Collect Logs

To aid in debugging, please collect the necessary logs. To do so, run the collect-logs subcommand to produce a tarfile
that you can easily upload:

$ cloud-init collect-logs
Wrote /home/ubuntu/cloud-init.tar.gz

If your version of cloud-init does not have the collect-logs subcommand, then please manually collect the base log
files by doing the following:

$ dmesg > dmesg.txt
$ sudo journalctl -o short-precise > journal.txt
$ sudo tar -cvf cloud-init.tar dmesg.txt journal.txt /run/cloud-init \

/var/log/cloud-init.log /var/log/cloud-init-output.log

1.5.2 Report Upstream Bug

Bugs for upstream cloud-init are tracked using Launchpad. To file a bug:

1. Collect the necessary debug logs as described above

2. Create a Launchpad account or login to your existing account

3. Report an upstream cloud-init bug

If debug logs are not provided, you will be asked for them before any further time is spent debugging. If you are
unable to obtain the required logs please explain why in the bug.

If your bug is for a specific distro using cloud-init, please first consider reporting it with the upstream distro or confirm
that it still occurs with the latest upstream cloud-init code. See below for details on specific distro reporting.

1.5.3 Distro Specific Issues

For issues specific to your distro please use one of the following distro specific reporting mechanisms:

Ubuntu

To report a bug on Ubuntu use the ubuntu-bug command on the affected system to automatically collect the necessary
logs and file a bug on Launchpad:

$ ubuntu-bug cloud-init

If that does not work or is not an option, please collect the logs using the commands in the above Collect Logs section
and then report the bug on the Ubuntu bug tracker. Make sure to attach your collected logs!
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Debian

To file a bug against the Debian package fo cloud-init please use the Debian bug tracker to file against ‘Package:
cloud-init’. See the Debian bug reporting wiki wiki page for more details.

Red Hat, CentOS, & Fedora

To file a bug against the Red Hat or Fedora packages of cloud-init please use the Red Hat bugzilla.

SUSE & openSUSE

To file a bug against the SuSE packages of cloud-init please use the SUSE bugzilla.

Arch

To file a bug against the Arch package of cloud-init please use the Arch Linux Bugtracker. See the Arch bug reporting
wiki for more details.

1.6 User-Data Formats

User data that will be acted upon by cloud-init must be in one of the following types.

1.6.1 Gzip Compressed Content

Content found to be gzip compressed will be uncompressed. The uncompressed data will then be used as if it were
not compressed. This is typically useful because user-data is limited to ~163841 bytes.

1.6.2 Mime Multi Part Archive

This list of rules is applied to each part of this multi-part file. Using a mime-multi part file, the user can specify more
than one type of data.

For example, both a user data script and a cloud-config type could be specified.

Supported content-types:

• text/cloud-boothook

• text/cloud-config

• text/cloud-config-archive

• text/jinja2

• text/part-handler

• text/upstart-job

• text/x-include-once-url

• text/x-include-url

• text/x-shellscript
1 See your cloud provider for applicable user-data size limitations. . .
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Helper script to generate mime messages

The cloud-init codebase includes a helper script to generate MIME multi-part files: make-mime.py.

make-mime.py takes pairs of (filename, “text/” mime subtype) separated by a colon (e.g. config.
yaml:cloud-config) and emits a MIME multipart message to stdout. An example invocation, assuming you
have your cloud config in config.yaml and a shell script in script.sh and want to store the multipart message
in user-data:

./tools/make-mime.py -a config.yaml:cloud-config -a script.sh:x-shellscript > user-
→˓data

1.6.3 User-Data Script

Typically used by those who just want to execute a shell script.

Begins with: #! or Content-Type: text/x-shellscript when using a MIME archive.

Note: New in cloud-init v. 18.4: User-data scripts can also render cloud instance metadata variables using jinja
templating. See Instance Metadata for more information.

Example

$ cat myscript.sh

#!/bin/sh
echo "Hello World. The time is now $(date -R)!" | tee /root/output.txt

$ euca-run-instances --key mykey --user-data-file myscript.sh ami-a07d95c9

1.6.4 Include File

This content is a include file.

The file contains a list of urls, one per line. Each of the URLs will be read, and their content will be passed through
this same set of rules. Ie, the content read from the URL can be gzipped, mime-multi-part, or plain text. If an error
occurs reading a file the remaining files will not be read.

Begins with: #include or Content-Type: text/x-include-url when using a MIME archive.

1.6.5 Cloud Config Data

Cloud-config is the simplest way to accomplish some things via user-data. Using cloud-config syntax, the user can
specify certain things in a human friendly format.

These things include:

• apt upgrade should be run on first boot

• a different apt mirror should be used

• additional apt sources should be added
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• certain SSH keys should be imported

• and many more. . .

Note: This file must be valid yaml syntax.

See the Cloud config examples section for a commented set of examples of supported cloud config formats.

Begins with: #cloud-config or Content-Type: text/cloud-config when using a MIME archive.

Note: New in cloud-init v. 18.4: Cloud config data can also render cloud instance metadata variables using jinja
templating. See Instance Metadata for more information.

1.6.6 Upstart Job

Content is placed into a file in /etc/init, and will be consumed by upstart as any other upstart job.

Begins with: #upstart-job or Content-Type: text/upstart-job when using a MIME archive.

1.6.7 Cloud Boothook

This content is boothook data. It is stored in a file under /var/lib/cloud and then executed immediately. This
is the earliest hook available. Note, that there is no mechanism provided for running only once. The boothook must
take care of this itself.

It is provided with the instance id in the environment variable INSTANCE_ID. This could be made use of to provide
a ‘once-per-instance’ type of functionality.

Begins with: #cloud-boothook or Content-Type: text/cloud-boothook when using a MIME
archive.

1.6.8 Part Handler

This is a part-handler: It contains custom code for either supporting new mime-types in multi-part user data, or
overriding the existing handlers for supported mime-types. It will be written to a file in /var/lib/cloud/data
based on its filename (which is generated).

This must be python code that contains a list_types function and a handle_part function. Once the section
is read the list_types method will be called. It must return a list of mime-types that this part-handler handles.
Because mime parts are processed in order, a part-handler part must precede any parts with mime-types it is
expected to handle in the same user data.

The handle_part function must be defined like:

def handle_part(data, ctype, filename, payload):
# data = the cloudinit object
# ctype = "__begin__", "__end__", or the mime-type of the part that is being

→˓handled.
# filename = the filename of the part (or a generated filename if none is present

→˓in mime data)
# payload = the parts' content
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Cloud-init will then call the handle_part function once before it handles any parts, once per part received, and
once after all parts have been handled. The '__begin__' and '__end__' sentinels allow the part handler to do
initialization or teardown before or after receiving any parts.

Begins with: #part-handler or Content-Type: text/part-handler when using a MIME archive.

Example

1 #part-handler
2 # vi: syntax=python ts=4
3

4 def list_types():
5 # return a list of mime-types that are handled by this module
6 return(["text/plain", "text/go-cubs-go"])
7

8 def handle_part(data,ctype,filename,payload):
9 # data: the cloudinit object

10 # ctype: '__begin__', '__end__', or the specific mime-type of the part
11 # filename: the filename for the part, or dynamically generated part if
12 # no filename is given attribute is present
13 # payload: the content of the part (empty for begin or end)
14 if ctype == "__begin__":
15 print "my handler is beginning"
16 return
17 if ctype == "__end__":
18 print "my handler is ending"
19 return
20

21 print "==== received ctype=%s filename=%s ====" % (ctype,filename)
22 print payload
23 print "==== end ctype=%s filename=%s" % (ctype, filename)

Also this blog post offers another example for more advanced usage.

1.6.9 Kernel Command Line

When using the NoCloud datasource, users can pass user data via the kernel command line parameters. See the
NoCloud datasource documentation for more details.

1.6.10 Disabling User-Data

Cloud-init can be configured to ignore any user-data provided to instance. This allows custom images to prevent
users from accidentally breaking closed appliances. Setting allow_userdata: false in the configuration will
disable cloud-init from processing user-data.

1.7 Cloud config examples

1.7.1 Including users and groups
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1 #cloud-config
2 # Add groups to the system
3 # The following example adds the ubuntu group with members 'root' and 'sys'
4 # and the empty group cloud-users.
5 groups:
6 - ubuntu: [root,sys]
7 - cloud-users
8

9 # Add users to the system. Users are added after groups are added.
10 users:
11 - default
12 - name: foobar
13 gecos: Foo B. Bar
14 primary_group: foobar
15 groups: users
16 selinux_user: staff_u
17 expiredate: 2012-09-01
18 ssh_import_id: foobar
19 lock_passwd: false
20 passwd: $6$j212wezy$7H/1LT4f9/

→˓N3wpgNunhsIqtMj62OKiS3nyNwuizouQc3u7MbYCarYeAHWYPYb2FT.lbioDm2RrkJPb9BZMN1O/
21 - name: barfoo
22 gecos: Bar B. Foo
23 sudo: ALL=(ALL) NOPASSWD:ALL
24 groups: users, admin
25 ssh_import_id: None
26 lock_passwd: true
27 ssh_authorized_keys:
28 - <ssh pub key 1>
29 - <ssh pub key 2>
30 - name: cloudy
31 gecos: Magic Cloud App Daemon User
32 inactive: true
33 system: true
34 - name: fizzbuzz
35 sudo: False
36 ssh_authorized_keys:
37 - <ssh pub key 1>
38 - <ssh pub key 2>
39 - snapuser: joe@joeuser.io
40 - name: nosshlogins
41 ssh_redirect_user: true
42

43 # Valid Values:
44 # name: The user's login name
45 # gecos: The user name's real name, i.e. "Bob B. Smith"
46 # homedir: Optional. Set to the local path you want to use. Defaults to
47 # /home/<username>
48 # primary_group: define the primary group. Defaults to a new group created
49 # named after the user.
50 # groups: Optional. Additional groups to add the user to. Defaults to none
51 # selinux_user: Optional. The SELinux user for the user's login, such as
52 # "staff_u". When this is omitted the system will select the default
53 # SELinux user.
54 # lock_passwd: Defaults to true. Lock the password to disable password login
55 # inactive: Create the user as inactive
56 # passwd: The hash -- not the password itself -- of the password you want

(continues on next page)
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57 # to use for this user. You can generate a safe hash via:
58 # mkpasswd --method=SHA-512 --rounds=4096
59 # (the above command would create from stdin an SHA-512 password hash
60 # with 4096 salt rounds)
61 #
62 # Please note: while the use of a hashed password is better than
63 # plain text, the use of this feature is not ideal. Also,
64 # using a high number of salting rounds will help, but it should
65 # not be relied upon.
66 #
67 # To highlight this risk, running John the Ripper against the
68 # example hash above, with a readily available wordlist, revealed
69 # the true password in 12 seconds on a i7-2620QM.
70 #
71 # In other words, this feature is a potential security risk and is
72 # provided for your convenience only. If you do not fully trust the
73 # medium over which your cloud-config will be transmitted, then you
74 # should use SSH authentication only.
75 #
76 # You have thus been warned.
77 # no_create_home: When set to true, do not create home directory.
78 # no_user_group: When set to true, do not create a group named after the user.
79 # no_log_init: When set to true, do not initialize lastlog and faillog database.
80 # ssh_import_id: Optional. Import SSH ids
81 # ssh_authorized_keys: Optional. [list] Add keys to user's authorized keys file
82 # ssh_redirect_user: Optional. [bool] Set true to block ssh logins for cloud
83 # ssh public keys and emit a message redirecting logins to
84 # use <default_username> instead. This option only disables cloud
85 # provided public-keys. An error will be raised if ssh_authorized_keys
86 # or ssh_import_id is provided for the same user.
87 #
88 # ssh_authorized_keys.
89 # sudo: Defaults to none. Accepts a sudo rule string, a list of sudo rule
90 # strings or False to explicitly deny sudo usage. Examples:
91 #
92 # Allow a user unrestricted sudo access.
93 # sudo: ALL=(ALL) NOPASSWD:ALL
94 #
95 # Adding multiple sudo rule strings.
96 # sudo:
97 # - ALL=(ALL) NOPASSWD:/bin/mysql
98 # - ALL=(ALL) ALL
99 #

100 # Prevent sudo access for a user.
101 # sudo: False
102 #
103 # Note: Please double check your syntax and make sure it is valid.
104 # cloud-init does not parse/check the syntax of the sudo
105 # directive.
106 # system: Create the user as a system user. This means no home directory.
107 # snapuser: Create a Snappy (Ubuntu-Core) user via the snap create-user
108 # command available on Ubuntu systems. If the user has an account
109 # on the Ubuntu SSO, specifying the email will allow snap to
110 # request a username and any public ssh keys and will import
111 # these into the system with username specifed by SSO account.
112 # If 'username' is not set in SSO, then username will be the
113 # shortname before the email domain.

(continues on next page)
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114 #
115

116 # Default user creation:
117 #
118 # Unless you define users, you will get a 'ubuntu' user on ubuntu systems with the
119 # legacy permission (no password sudo, locked user, etc). If however, you want
120 # to have the 'ubuntu' user in addition to other users, you need to instruct
121 # cloud-init that you also want the default user. To do this use the following
122 # syntax:
123 # users:
124 # - default
125 # - bob
126 # - ....
127 # foobar: ...
128 #
129 # users[0] (the first user in users) overrides the user directive.
130 #
131 # The 'default' user above references the distro's config:
132 # system_info:
133 # default_user:
134 # name: Ubuntu
135 # plain_text_passwd: 'ubuntu'
136 # home: /home/ubuntu
137 # shell: /bin/bash
138 # lock_passwd: True
139 # gecos: Ubuntu
140 # groups: [adm, audio, cdrom, dialout, floppy, video, plugdev, dip, netdev]

1.7.2 Writing out arbitrary files

1 #cloud-config
2 # vim: syntax=yaml
3 #
4 # This is the configuration syntax that the write_files module
5 # will know how to understand. encoding can be given b64 or gzip or (gz+b64).
6 # The content will be decoded accordingly and then written to the path that is
7 # provided.
8 #
9 # Note: Content strings here are truncated for example purposes.

10 write_files:
11 - encoding: b64
12 content: CiMgVGhpcyBmaWxlIGNvbnRyb2xzIHRoZSBzdGF0ZSBvZiBTRUxpbnV4...
13 owner: root:root
14 path: /etc/sysconfig/selinux
15 permissions: '0644'
16 - content: |
17 # My new /etc/sysconfig/samba file
18

19 SMBDOPTIONS="-D"
20 path: /etc/sysconfig/samba
21 - content: !!binary |
22 f0VMRgIBAQAAAAAAAAAAAAIAPgABAAAAwARAAAAAAABAAAAAAAAAAJAVAAAAAAAAAAAAAEAAOAAI
23 AEAAHgAdAAYAAAAFAAAAQAAAAAAAAABAAEAAAAAAAEAAQAAAAAAAwAEAAAAAAADAAQAAAAAAAAgA
24 AAAAAAAAAwAAAAQAAAAAAgAAAAAAAAACQAAAAAAAAAJAAAAAAAAcAAAAAAAAABwAAAAAAAAAAQAA
25 ....

(continues on next page)
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26 path: /bin/arch
27 permissions: '0555'
28 - encoding: gzip
29 content: !!binary |
30 H4sIAIDb/U8C/1NW1E/KzNMvzuBKTc7IV8hIzcnJVyjPL8pJ4QIA6N+MVxsAAAA=
31 path: /usr/bin/hello
32 permissions: '0755'

1.7.3 Adding a yum repository

1 #cloud-config
2 # vim: syntax=yaml
3 #
4 # Add yum repository configuration to the system
5 #
6 # The following example adds the file /etc/yum.repos.d/epel_testing.repo
7 # which can then subsequently be used by yum for later operations.
8 yum_repos:
9 # The name of the repository

10 epel-testing:
11 # Any repository configuration options
12 # See: man yum.conf
13 #
14 # This one is required!
15 baseurl: http://download.fedoraproject.org/pub/epel/testing/5/$basearch
16 enabled: false
17 failovermethod: priority
18 gpgcheck: true
19 gpgkey: file:///etc/pki/rpm-gpg/RPM-GPG-KEY-EPEL
20 name: Extra Packages for Enterprise Linux 5 - Testing

1.7.4 Configure an instances trusted CA certificates

1 #cloud-config
2 #
3 # This is an example file to configure an instance's trusted CA certificates
4 # system-wide for SSL/TLS trust establishment when the instance boots for the
5 # first time.
6 #
7 # Make sure that this file is valid yaml before starting instances.
8 # It should be passed as user-data when starting the instance.
9

10 ca-certs:
11 # If present and set to True, the 'remove-defaults' parameter will remove
12 # all the default trusted CA certificates that are normally shipped with
13 # Ubuntu.
14 # This is mainly for paranoid admins - most users will not need this
15 # functionality.
16 remove-defaults: true
17

18 # If present, the 'trusted' parameter should contain a certificate (or list
19 # of certificates) to add to the system as trusted CA certificates.

(continues on next page)

1.7. Cloud config examples 23



cloud-init, Release 20.2

(continued from previous page)

20 # Pay close attention to the YAML multiline list syntax. The example shown
21 # here is for a list of multiline certificates.
22 trusted:
23 - |
24 -----BEGIN CERTIFICATE-----
25 YOUR-ORGS-TRUSTED-CA-CERT-HERE
26 -----END CERTIFICATE-----
27 - |
28 -----BEGIN CERTIFICATE-----
29 YOUR-ORGS-TRUSTED-CA-CERT-HERE
30 -----END CERTIFICATE-----

1.7.5 Configure an instances resolv.conf

Note: when using a config drive and a RHEL like system resolv.conf will also be managed ‘automatically’ due to the
available information provided for dns servers in the config drive network format. For those that wish to have different
settings use this module.

1 #cloud-config
2 #
3 # This is an example file to automatically configure resolv.conf when the
4 # instance boots for the first time.
5 #
6 # Ensure that your yaml is valid and pass this as user-data when starting
7 # the instance. Also be sure that your cloud.cfg file includes this
8 # configuration module in the appropriate section.
9 #

10 manage_resolv_conf: true
11

12 resolv_conf:
13 nameservers: ['8.8.4.4', '8.8.8.8']
14 searchdomains:
15 - foo.example.com
16 - bar.example.com
17 domain: example.com
18 options:
19 rotate: true
20 timeout: 1

1.7.6 Install and run chef recipes

1 #cloud-config
2 #
3 # This is an example file to automatically install chef-client and run a
4 # list of recipes when the instance boots for the first time.
5 # Make sure that this file is valid yaml before starting instances.
6 # It should be passed as user-data when starting the instance.
7 #
8 # This example assumes the instance is 16.04 (xenial)
9

10

11 # The default is to install from packages.
12

(continues on next page)
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13 # Key from https://packages.chef.io/chef.asc
14 apt:
15 sources:
16 source1: "deb http://packages.chef.io/repos/apt/stable $RELEASE main"
17 key: |
18 -----BEGIN PGP PUBLIC KEY BLOCK-----
19 Version: GnuPG v1.4.12 (Darwin)
20 Comment: GPGTools - http://gpgtools.org
21

22 mQGiBEppC7QRBADfsOkZU6KZK+YmKw4wev5mjKJEkVGlus+NxW8wItX5sGa6kdUu
23 twAyj7Yr92rF+ICFEP3gGU6+lGo0Nve7KxkN/1W7/m3G4zuk+ccIKmjp8KS3qn99
24 dxy64vcji9jIllVa+XXOGIp0G8GEaj7mbkixL/bMeGfdMlv8Gf2XPpp9vwCgn/GC
25 JKacfnw7MpLKUHOYSlb//JsEAJqao3ViNfav83jJKEkD8cf59Y8xKia5OpZqTK5W
26 ShVnNWS3U5IVQk10ZDH97Qn/YrK387H4CyhLE9mxPXs/ul18ioiaars/q2MEKU2I
27 XKfV21eMLO9LYd6Ny/Kqj8o5WQK2J6+NAhSwvthZcIEphcFignIuobP+B5wNFQpe
28 DbKfA/0WvN2OwFeWRcmmd3Hz7nHTpcnSF+4QX6yHRF/5BgxkG6IqBIACQbzPn6Hm
29 sMtm/SVf11izmDqSsQptCrOZILfLX/mE+YOl+CwWSHhl+YsFts1WOuh1EhQD26aO
30 Z84HuHV5HFRWjDLw9LriltBVQcXbpfSrRP5bdr7Wh8vhqJTPjrQnT3BzY29kZSBQ
31 YWNrYWdlcyA8cGFja2FnZXNAb3BzY29kZS5jb20+iGAEExECACAFAkppC7QCGwMG
32 CwkIBwMCBBUCCAMEFgIDAQIeAQIXgAAKCRApQKupg++Caj8sAKCOXmdG36gWji/K
33 +o+XtBfvdMnFYQCfTCEWxRy2BnzLoBBFCjDSK6sJqCu0IENIRUYgUGFja2FnZXMg
34 PHBhY2thZ2VzQGNoZWYuaW8+iGIEExECACIFAlQwYFECGwMGCwkIBwMCBhUIAgkK
35 CwQWAgMBAh4BAheAAAoJEClAq6mD74JqX94An26z99XOHWpLN8ahzm7cp13t4Xid
36 AJ9wVcgoUBzvgg91lKfv/34cmemZn7kCDQRKaQu0EAgAg7ZLCVGVTmLqBM6njZEd
37 Zbv+mZbvwLBSomdiqddE6u3eH0X3GuwaQfQWHUVG2yedyDMiG+EMtCdEeeRebTCz
38 SNXQ8Xvi22hRPoEsBSwWLZI8/XNg0n0f1+GEr+mOKO0BxDB2DG7DA0nnEISxwFkK
39 OFJFebR3fRsrWjj0KjDxkhse2ddU/jVz1BY7Nf8toZmwpBmdozETMOTx3LJy1HZ/
40 Te9FJXJMUaB2lRyluv15MVWCKQJro4MQG/7QGcIfrIZNfAGJ32DDSjV7/YO+IpRY
41 IL4CUBQ65suY4gYUG4jhRH6u7H1p99sdwsg5OIpBe/v2Vbc/tbwAB+eJJAp89Zeu
42 twADBQf/ZcGoPhTGFuzbkcNRSIz+boaeWPoSxK2DyfScyCAuG41CY9+g0HIw9Sq8
43 DuxQvJ+vrEJjNvNE3EAEdKl/zkXMZDb1EXjGwDi845TxEMhhD1dDw2qpHqnJ2mtE
44 WpZ7juGwA3sGhi6FapO04tIGacCfNNHmlRGipyq5ZiKIRq9mLEndlECr8cwaKgkS
45 0wWu+xmMZe7N5/t/TK19HXNh4tVacv0F3fYK54GUjt2FjCQV75USnmNY4KPTYLXA
46 dzC364hEMlXpN21siIFgB04w+TXn5UF3B4FfAy5hevvr4DtV4MvMiGLu0oWjpaLC
47 MpmrR3Ny2wkmO0h+vgri9uIP06ODWIhJBBgRAgAJBQJKaQu0AhsMAAoJEClAq6mD
48 74Jq4hIAoJ5KrYS8kCwj26SAGzglwggpvt3CAJ0bekyky56vNqoegB+y4PQVDv4K
49 zA==
50 =IxPr
51 -----END PGP PUBLIC KEY BLOCK-----
52

53 chef:
54

55 # Valid values are 'gems' and 'packages' and 'omnibus'
56 install_type: "packages"
57

58 # Boolean: run 'install_type' code even if chef-client
59 # appears already installed.
60 force_install: false
61

62 # Chef settings
63 server_url: "https://chef.yourorg.com"
64

65 # Node Name
66 # Defaults to the instance-id if not present
67 node_name: "your-node-name"
68

69 # Environment
(continues on next page)
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70 # Defaults to '_default' if not present
71 environment: "production"
72

73 # Default validation name is chef-validator
74 validation_name: "yourorg-validator"
75 # if validation_cert's value is "system" then it is expected
76 # that the file already exists on the system.
77 validation_cert: |
78 -----BEGIN RSA PRIVATE KEY-----
79 YOUR-ORGS-VALIDATION-KEY-HERE
80 -----END RSA PRIVATE KEY-----
81

82 # A run list for a first boot json, an example (not required)
83 run_list:
84 - "recipe[apache2]"
85 - "role[db]"
86

87 # Specify a list of initial attributes used by the cookbooks
88 initial_attributes:
89 apache:
90 prefork:
91 maxclients: 100
92 keepalive: "off"
93

94 # if install_type is 'omnibus', change the url to download
95 omnibus_url: "https://www.chef.io/chef/install.sh"
96

97 # if install_type is 'omnibus', pass pinned version string
98 # to the install script
99 omnibus_version: "12.3.0"

100

101 # If encrypted data bags are used, the client needs to have a secrets file
102 # configured to decrypt them
103 encrypted_data_bag_secret: "/etc/chef/encrypted_data_bag_secret"
104

105 # Capture all subprocess output into a logfile
106 # Useful for troubleshooting cloud-init issues
107 output: {all: '| tee -a /var/log/cloud-init-output.log'}

1.7.7 Setup and run puppet

1 #cloud-config
2 #
3 # This is an example file to automatically setup and run puppetd
4 # when the instance boots for the first time.
5 # Make sure that this file is valid yaml before starting instances.
6 # It should be passed as user-data when starting the instance.
7 puppet:
8 # Every key present in the conf object will be added to puppet.conf:
9 # [name]

10 # subkey=value
11 #
12 # For example the configuration below will have the following section
13 # added to puppet.conf:
14 # [puppetd]

(continues on next page)
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15 # server=puppetmaster.example.org
16 # certname=i-0123456.ip-X-Y-Z.cloud.internal
17 #
18 # The puppmaster ca certificate will be available in
19 # /var/lib/puppet/ssl/certs/ca.pem
20 conf:
21 agent:
22 server: "puppetmaster.example.org"
23 # certname supports substitutions at runtime:
24 # %i: instanceid
25 # Example: i-0123456
26 # %f: fqdn of the machine
27 # Example: ip-X-Y-Z.cloud.internal
28 #
29 # NB: the certname will automatically be lowercased as required by puppet
30 certname: "%i.%f"
31 # ca_cert is a special case. It won't be added to puppet.conf.
32 # It holds the puppetmaster certificate in pem format.
33 # It should be a multi-line string (using the | yaml notation for
34 # multi-line strings).
35 # The puppetmaster certificate is located in
36 # /var/lib/puppet/ssl/ca/ca_crt.pem on the puppetmaster host.
37 #
38 ca_cert: |
39 -----BEGIN CERTIFICATE-----
40 MIICCTCCAXKgAwIBAgIBATANBgkqhkiG9w0BAQUFADANMQswCQYDVQQDDAJjYTAe
41 Fw0xMDAyMTUxNzI5MjFaFw0xNTAyMTQxNzI5MjFaMA0xCzAJBgNVBAMMAmNhMIGf
42 MA0GCSqGSIb3DQEBAQUAA4GNADCBiQKBgQCu7Q40sm47/E1Pf+r8AYb/V/FWGPgc
43 b014OmNoX7dgCxTDvps/h8Vw555PdAFsW5+QhsGr31IJNI3kSYprFQcYf7A8tNWu
44 1MASW2CfaEiOEi9F1R3R4Qlz4ix+iNoHiUDTjazw/tZwEdxaQXQVLwgTGRwVa+aA
45 qbutJKi93MILLwIDAQABo3kwdzA4BglghkgBhvhCAQ0EKxYpUHVwcGV0IFJ1Ynkv
46 T3BlblNTTCBHZW5lcmF0ZWQgQ2VydGlmaWNhdGUwDwYDVR0TAQH/BAUwAwEB/zAd
47 BgNVHQ4EFgQUu4+jHB+GYE5Vxo+ol1OAhevspjAwCwYDVR0PBAQDAgEGMA0GCSqG
48 SIb3DQEBBQUAA4GBAH/rxlUIjwNb3n7TXJcDJ6MMHUlwjr03BDJXKb34Ulndkpaf
49 +GAlzPXWa7bO908M9I8RnPfvtKnteLbvgTK+h+zX1XCty+S2EQWk29i2AdoqOTxb
50 hppiGMp0tT5Havu4aceCXiy2crVcudj3NFciy8X66SoECemW9UYDCb9T5D0d
51 -----END CERTIFICATE-----

1.7.8 Add primary apt repositories

1 #cloud-config
2

3 # Add primary apt repositories
4 #
5 # To add 3rd party repositories, see cloud-config-apt.txt or the
6 # Additional apt configuration and repositories section.
7 #
8 #
9 # Default: auto select based on cloud metadata

10 # in ec2, the default is <region>.archive.ubuntu.com
11 # apt:
12 # primary:
13 # - arches [default]
14 # uri:
15 # use the provided mirror

(continues on next page)
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16 # search:
17 # search the list for the first mirror.
18 # this is currently very limited, only verifying that
19 # the mirror is dns resolvable or an IP address
20 #
21 # if neither mirror is set (the default)
22 # then use the mirror provided by the DataSource found.
23 # In EC2, that means using <region>.ec2.archive.ubuntu.com
24 #
25 # if no mirror is provided by the DataSource, but 'search_dns' is
26 # true, then search for dns names '<distro>-mirror' in each of
27 # - fqdn of this host per cloud metadata
28 # - localdomain
29 # - no domain (which would search domains listed in /etc/resolv.conf)
30 # If there is a dns entry for <distro>-mirror, then it is assumed that there
31 # is a distro mirror at http://<distro>-mirror.<domain>/<distro>
32 #
33 # That gives the cloud provider the opportunity to set mirrors of a distro
34 # up and expose them only by creating dns entries.
35 #
36 # if none of that is found, then the default distro mirror is used
37 apt:
38 primary:
39 - arches: [default]
40 uri: http://us.archive.ubuntu.com/ubuntu/
41 # or
42 apt:
43 primary:
44 - arches: [default]
45 search:
46 - http://local-mirror.mydomain
47 - http://archive.ubuntu.com
48 # or
49 apt:
50 primary:
51 - arches: [default]
52 search_dns: True

1.7.9 Run commands on first boot

1 #cloud-config
2

3 # boot commands
4 # default: none
5 # this is very similar to runcmd, but commands run very early
6 # in the boot process, only slightly after a 'boothook' would run.
7 # bootcmd should really only be used for things that could not be
8 # done later in the boot process. bootcmd is very much like
9 # boothook, but possibly with more friendly.

10 # - bootcmd will run on every boot
11 # - the INSTANCE_ID variable will be set to the current instance id.
12 # - you can use 'cloud-init-per' command to help only run once
13 bootcmd:
14 - echo 192.168.1.130 us.archive.ubuntu.com >> /etc/hosts
15 - [ cloud-init-per, once, mymkfs, mkfs, /dev/vdb ]
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1 #cloud-config
2

3 # run commands
4 # default: none
5 # runcmd contains a list of either lists or a string
6 # each item will be executed in order at rc.local like level with
7 # output to the console
8 # - runcmd only runs during the first boot
9 # - if the item is a list, the items will be properly executed as if

10 # passed to execve(3) (with the first arg as the command).
11 # - if the item is a string, it will be simply written to the file and
12 # will be interpreted by 'sh'
13 #
14 # Note, that the list has to be proper yaml, so you have to quote
15 # any characters yaml would eat (':' can be problematic)
16 runcmd:
17 - [ ls, -l, / ]
18 - [ sh, -xc, "echo $(date) ': hello world!'" ]
19 - [ sh, -c, echo "=========hello world'=========" ]
20 - ls -l /root
21 # Note: Don't write files to /tmp from cloud-init use /run/somedir instead.
22 # Early boot environments can race systemd-tmpfiles-clean LP: #1707222.
23 - mkdir /run/mydir
24 - [ wget, "http://slashdot.org", -O, /run/mydir/index.html ]

1.7.10 Alter the completion message

1 #cloud-config
2

3 # final_message
4 # default: cloud-init boot finished at $TIMESTAMP. Up $UPTIME seconds
5 # this message is written by cloud-final when the system is finished
6 # its first boot
7 final_message: "The system is finally up, after $UPTIME seconds"

1.7.11 Install arbitrary packages

1 #cloud-config
2

3 # Install additional packages on first boot
4 #
5 # Default: none
6 #
7 # if packages are specified, this apt_update will be set to true
8 #
9 # packages may be supplied as a single package name or as a list

10 # with the format [<package>, <version>] wherein the specifc
11 # package version will be installed.
12 packages:
13 - pwgen
14 - pastebinit
15 - [libpython2.7, 2.7.3-0ubuntu3.1]
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1.7.12 Update apt database on first boot

1 #cloud-config
2 # Update apt database on first boot (run 'apt-get update').
3 # Note, if packages are given, or package_upgrade is true, then
4 # update will be done independent of this setting.
5 #
6 # Default: false
7 # Aliases: apt_update
8 package_update: true

1.7.13 Run apt or yum upgrade

1 #cloud-config
2

3 # Upgrade the instance on first boot
4 # (ie run apt-get upgrade)
5 #
6 # Default: false
7 # Aliases: apt_upgrade
8 package_upgrade: true

1.7.14 Adjust mount points mounted

1 #cloud-config
2

3 # set up mount points
4 # 'mounts' contains a list of lists
5 # the inner list are entries for an /etc/fstab line
6 # ie : [ fs_spec, fs_file, fs_vfstype, fs_mntops, fs-freq, fs_passno ]
7 #
8 # default:
9 # mounts:

10 # - [ ephemeral0, /mnt ]
11 # - [ swap, none, swap, sw, 0, 0 ]
12 #
13 # in order to remove a previously listed mount (ie, one from defaults)
14 # list only the fs_spec. For example, to override the default, of
15 # mounting swap:
16 # - [ swap ]
17 # or
18 # - [ swap, null ]
19 #
20 # - if a device does not exist at the time, an entry will still be
21 # written to /etc/fstab.
22 # - '/dev' can be ommitted for device names that begin with: xvd, sd, hd, vd
23 # - if an entry does not have all 6 fields, they will be filled in
24 # with values from 'mount_default_fields' below.
25 #
26 # Note, that you should set 'nofail' (see man fstab) for volumes that may not
27 # be attached at instance boot (or reboot).
28 #
29 mounts:

(continues on next page)
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30 - [ ephemeral0, /mnt, auto, "defaults,noexec" ]
31 - [ sdc, /opt/data ]
32 - [ xvdh, /opt/data, "auto", "defaults,nofail", "0", "0" ]
33 - [ dd, /dev/zero ]
34

35 # mount_default_fields
36 # These values are used to fill in any entries in 'mounts' that are not
37 # complete. This must be an array, and must have 6 fields.
38 mount_default_fields: [ None, None, "auto", "defaults,nofail", "0", "2" ]
39

40

41 # swap can also be set up by the 'mounts' module
42 # default is to not create any swap files, because 'size' is set to 0
43 swap:
44 filename: /swap.img
45 size: "auto" # or size in bytes
46 maxsize: size in bytes

1.7.15 Call a url when finished

1 #cloud-config
2

3 # phone_home: if this dictionary is present, then the phone_home
4 # cloud-config module will post specified data back to the given
5 # url
6 # default: none
7 # phone_home:
8 # url: http://my.foo.bar/$INSTANCE/
9 # post: all

10 # tries: 10
11 #
12 phone_home:
13 url: http://my.example.com/$INSTANCE_ID/
14 post: [ pub_key_dsa, pub_key_rsa, pub_key_ecdsa, instance_id ]

1.7.16 Reboot/poweroff when finished

1 #cloud-config
2

3 ## poweroff or reboot system after finished
4 # default: none
5 #
6 # power_state can be used to make the system shutdown, reboot or
7 # halt after boot is finished. This same thing can be acheived by
8 # user-data scripts or by runcmd by simply invoking 'shutdown'.
9 #

10 # Doing it this way ensures that cloud-init is entirely finished with
11 # modules that would be executed, and avoids any error/log messages
12 # that may go to the console as a result of system services like
13 # syslog being taken down while cloud-init is running.
14 #
15 # If you delay '+5' (5 minutes) and have a timeout of

(continues on next page)
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16 # 120 (2 minutes), then the max time until shutdown will be 7 minutes.
17 # cloud-init will invoke 'shutdown +5' after the process finishes, or
18 # when 'timeout' seconds have elapsed.
19 #
20 # delay: form accepted by shutdown. default is 'now'. other format
21 # accepted is +m (m in minutes)
22 # mode: required. must be one of 'poweroff', 'halt', 'reboot'
23 # message: provided as the message argument to 'shutdown'. default is none.
24 # timeout: the amount of time to give the cloud-init process to finish
25 # before executing shutdown.
26 # condition: apply state change only if condition is met.
27 # May be boolean True (always met), or False (never met),
28 # or a command string or list to be executed.
29 # command's exit code indicates:
30 # 0: condition met
31 # 1: condition not met
32 # other exit codes will result in 'not met', but are reserved
33 # for future use.
34 #
35 power_state:
36 delay: "+30"
37 mode: poweroff
38 message: Bye Bye
39 timeout: 30
40 condition: True

1.7.17 Configure instances SSH keys

1 #cloud-config
2

3 # add each entry to ~/.ssh/authorized_keys for the configured user or the
4 # first user defined in the user definition directive.
5 ssh_authorized_keys:
6 - ssh-rsa AAAAB3NzaC1yc2EAAAABIwAAAGEA3FSyQwBI6Z+nCSjUUk8EEAnnkhXlukKoUPND/

→˓RRClWz2s5TCzIkd3Ou5+Cyz71X0XmazM3l5WgeErvtIwQMyT1KjNoMhoJMrJnWqQPOt5Q8zWd9qG7PBl9+eiH5qV7NZ
→˓mykey@host

7 - ssh-rsa
→˓AAAAB3NzaC1yc2EAAAABIwAAAQEA3I7VUf2l5gSn5uavROsc5HRDpZdQueUq5ozemNSj8T7enqKHOEaFoU2VoPgGEWC9RyzSQVeyD6s7APMcE82EtmW4skVEgEGSbDc1pvxzxtchBj78hJP6Cf5TCMFSXw+Fz5rF1dR23QDbN1mkHs7adr8GW4kSWqU7Q7NDwfIrJJtO7Hi42GyXtvEONHbiRPOe8stqUly7MvUoN+5kfjBM8Qqpfl2+FNhTYWpMfYdPUnE7u536WqzFmsaqJctz3gBxH9Ex7dFtrxR4qiqEr9Qtlu3xGn7Bw07/
→˓+i1D+ey3ONkZLN+LQ714cgj8fRS4Hj29SCmXp5Kt5/82cD/VN3NtHw== smoser@brickies

8

9 # Send pre-generated SSH private keys to the server
10 # If these are present, they will be written to /etc/ssh and
11 # new random keys will not be generated
12 # in addition to 'rsa' and 'dsa' as shown below, 'ecdsa' is also supported
13 ssh_keys:
14 rsa_private: |
15 -----BEGIN RSA PRIVATE KEY-----
16 MIIBxwIBAAJhAKD0YSHy73nUgysO13XsJmd4fHiFyQ+00R7VVu2iV9Qcon2LZS/x
17 1cydPZ4pQpfjEha6WxZ6o8ci/Ea/w0n+0HGPwaxlEG2Z9inNtj3pgFrYcRztfECb
18 1j6HCibZbAzYtwIBIwJgO8h72WjcmvcpZ8OvHSvTwAguO2TkR6mPgHsgSaKy6GJo
19 PUJnaZRWuba/HX0KGyhz19nPzLpzG5f0fYahlMJAyc13FV7K6kMBPXTRR6FxgHEg
20 L0MPC7cdqAwOVNcPY6A7AjEA1bNaIjOzFN2sfZX0j7OMhQuc4zP7r80zaGc5oy6W
21 p58hRAncFKEvnEq2CeL3vtuZAjEAwNBHpbNsBYTRPCHM7rZuG/iBtwp8Rxhc9I5w
22 ixvzMgi+HpGLWzUIBS+P/XhekIjPAjA285rVmEP+DR255Ls65QbgYhJmTzIXQ2T9
23 luLvcmFBC6l35Uc4gTgg4ALsmXLn71MCMGMpSWspEvuGInayTCL+vEjmNBT+FAdO
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24 W7D4zCpI43jRS9U06JVOeSc9CDk2lwiA3wIwCTB/6uc8Cq85D9YqpM10FuHjKpnP
25 REPPOyrAspdeOAV+6VKRavstea7+2DZmSUgE
26 -----END RSA PRIVATE KEY-----
27

28 rsa_public: ssh-rsa
→˓AAAAB3NzaC1yc2EAAAABIwAAAGEAoPRhIfLvedSDKw7XdewmZ3h8eIXJD7TRHtVW7aJX1ByifYtlL/
→˓HVzJ09nilCl+MSFrpbFnqjxyL8Rr/DSf7QcY/BrGUQbZn2Kc22PemAWthxHO18QJvWPocKJtlsDNi3
→˓smoser@localhost

29

30 dsa_private: |
31 -----BEGIN DSA PRIVATE KEY-----
32 MIIBuwIBAAKBgQDP2HLu7pTExL89USyM0264RCyWX/CMLmukxX0Jdbm29ax8FBJT
33 pLrO8TIXVY5rPAJm1dTHnpuyJhOvU9G7M8tPUABtzSJh4GVSHlwaCfycwcpLv9TX
34 DgWIpSj+6EiHCyaRlB1/CBp9RiaB+10QcFbm+lapuET+/Au6vSDp9IRtlQIVAIMR
35 8KucvUYbOEI+yv+5LW9u3z/BAoGBAI0q6JP+JvJmwZFaeCMMVxXUbqiSko/P1lsa
36 LNNBHZ5/8MOUIm8rB2FC6ziidfueJpqTMqeQmSAlEBCwnwreUnGfRrKoJpyPNENY
37 d15MG6N5J+z81sEcHFeprryZ+D3Ge9VjPq3Tf3NhKKwCDQ0240aPezbnjPeFm4mH
38 bYxxcZ9GAoGAXmLIFSQgiAPu459rCKxT46tHJtM0QfnNiEnQLbFluefZ/yiI4DI3
39 8UzTCOXLhUA7ybmZha+D/csj15Y9/BNFuO7unzVhikCQV9DTeXX46pG4s1o23JKC
40 /QaYWNMZ7kTRv+wWow9MhGiVdML4ZN4XnifuO5krqAybngIy66PMEoQCFEIsKKWv
41 99iziAH0KBMVbxy03Trz
42 -----END DSA PRIVATE KEY-----
43

44 dsa_public: ssh-dss AAAAB3NzaC1kc3MAAACBAM/
→˓Ycu7ulMTEvz1RLIzTbrhELJZf8Iwua6TFfQl1ubb1rHwUElOkus7xMhdVjms8AmbV1Meem7ImE69T0bszy09QAG3NImHgZVIeXBoJ/
→˓JzByku/
→˓1NcOBYilKP7oSIcLJpGUHX8IGn1GJoH7XRBwVub6Vqm4RP78C7q9IOn0hG2VAAAAFQCDEfCrnL1GGzhCPsr/
→˓uS1vbt8/wQAAAIEAjSrok/4m8mbBkVp4IwxXFdRuqJKSj8/WWxos00Ednn/
→˓ww5QibysHYULrOKJ1+54mmpMyp5CZICUQELCfCt5ScZ9GsqgmnI80Q1h3Xkwbo3kn7PzWwRwcV6muvJn4PcZ71WM+rdN/
→˓c2EorAINDTbjRo97NueM94WbiYdtjHFxn0YAAACAXmLIFSQgiAPu459rCKxT46tHJtM0QfnNiEnQLbFluefZ/
→˓yiI4DI38UzTCOXLhUA7ybmZha+D/csj15Y9/BNFuO7unzVhikCQV9DTeXX46pG4s1o23JKC/
→˓QaYWNMZ7kTRv+wWow9MhGiVdML4ZN4XnifuO5krqAybngIy66PMEoQ= smoser@localhost

1.7.18 Additional apt configuration and repositories

1 # apt_pipelining (configure Acquire::http::Pipeline-Depth)
2 # Default: disables HTTP pipelining. Certain web servers, such
3 # as S3 do not pipeline properly (LP: #948461).
4 # Valid options:
5 # False/default: Disables pipelining for APT
6 # None/Unchanged: Use OS default
7 # Number: Set pipelining to some number (not recommended)
8 apt_pipelining: False
9

10 ## apt config via system_info:
11 # under the 'system_info', you can customize cloud-init's interaction
12 # with apt.
13 # system_info:
14 # apt_get_command: [command, argument, argument]
15 # apt_get_upgrade_subcommand: dist-upgrade
16 #
17 # apt_get_command:
18 # To specify a different 'apt-get' command, set 'apt_get_command'.
19 # This must be a list, and the subcommand (update, upgrade) is appended to it.
20 # default is:

(continues on next page)
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21 # ['apt-get', '--option=Dpkg::Options::=--force-confold',
22 # '--option=Dpkg::options::=--force-unsafe-io', '--assume-yes', '--quiet']
23 #
24 # apt_get_upgrade_subcommand: "dist-upgrade"
25 # Specify a different subcommand for 'upgrade. The default is 'dist-upgrade'.
26 # This is the subcommand that is invoked for package_upgrade.
27 #
28 # apt_get_wrapper:
29 # command: eatmydata
30 # enabled: [True, False, "auto"]
31 #
32

33 # Install additional packages on first boot
34 #
35 # Default: none
36 #
37 # if packages are specified, this apt_update will be set to true
38

39 packages: ['pastebinit']
40

41 apt:
42 # The apt config consists of two major "areas".
43 #
44 # On one hand there is the global configuration for the apt feature.
45 #
46 # On one hand (down in this file) there is the source dictionary which allows
47 # to define various entries to be considered by apt.
48

49 ##############################################################################
50 # Section 1: global apt configuration
51 #
52 # The following examples number the top keys to ease identification in
53 # discussions.
54

55 # 1.1 preserve_sources_list
56 #
57 # Preserves the existing /etc/apt/sources.list
58 # Default: false - do overwrite sources_list. If set to true then any
59 # "mirrors" configuration will have no effect.
60 # Set to true to avoid affecting sources.list. In that case only
61 # "extra" source specifications will be written into
62 # /etc/apt/sources.list.d/*
63 preserve_sources_list: true
64

65 # 1.2 disable_suites
66 #
67 # This is an empty list by default, so nothing is disabled.
68 #
69 # If given, those suites are removed from sources.list after all other
70 # modifications have been made.
71 # Suites are even disabled if no other modification was made,
72 # but not if is preserve_sources_list is active.
73 # There is a special alias "$RELEASE" as in the sources that will be replace
74 # by the matching release.
75 #
76 # To ease configuration and improve readability the following common ubuntu
77 # suites will be automatically mapped to their full definition.
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78 # updates => $RELEASE-updates
79 # backports => $RELEASE-backports
80 # security => $RELEASE-security
81 # proposed => $RELEASE-proposed
82 # release => $RELEASE
83 #
84 # There is no harm in specifying a suite to be disabled that is not found in
85 # the source.list file (just a no-op then)
86 #
87 # Note: Lines don't get deleted, but disabled by being converted to a comment.
88 # The following example disables all usual defaults except $RELEASE-security.
89 # On top it disables a custom suite called "mysuite"
90 disable_suites: [$RELEASE-updates, backports, $RELEASE, mysuite]
91

92 # 1.3 primary/security archives
93 #
94 # Default: none - instead it is auto select based on cloud metadata
95 # so if neither "uri" nor "search", nor "search_dns" is set (the default)
96 # then use the mirror provided by the DataSource found.
97 # In EC2, that means using <region>.ec2.archive.ubuntu.com
98 #
99 # define a custom (e.g. localized) mirror that will be used in sources.list

100 # and any custom sources entries for deb / deb-src lines.
101 #
102 # One can set primary and security mirror to different uri's
103 # the child elements to the keys primary and secondary are equivalent
104 primary:
105 # arches is list of architectures the following config applies to
106 # the special keyword "default" applies to any architecture not explicitly
107 # listed.
108 - arches: [amd64, i386, default]
109 # uri is just defining the target as-is
110 uri: http://us.archive.ubuntu.com/ubuntu
111 #
112 # via search one can define lists that are tried one by one.
113 # The first with a working DNS resolution (or if it is an IP) will be
114 # picked. That way one can keep one configuration for multiple
115 # subenvironments that select the working one.
116 search:
117 - http://cool.but-sometimes-unreachable.com/ubuntu
118 - http://us.archive.ubuntu.com/ubuntu
119 # if no mirror is provided by uri or search but 'search_dns' is
120 # true, then search for dns names '<distro>-mirror' in each of
121 # - fqdn of this host per cloud metadata
122 # - localdomain
123 # - no domain (which would search domains listed in /etc/resolv.conf)
124 # If there is a dns entry for <distro>-mirror, then it is assumed that
125 # there is a distro mirror at http://<distro>-mirror.<domain>/<distro>
126 #
127 # That gives the cloud provider the opportunity to set mirrors of a distro
128 # up and expose them only by creating dns entries.
129 #
130 # if none of that is found, then the default distro mirror is used
131 search_dns: true
132 #
133 # If multiple of a category are given
134 # 1. uri

(continues on next page)
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135 # 2. search
136 # 3. search_dns
137 # the first defining a valid mirror wins (in the order as defined here,
138 # not the order as listed in the config).
139 #
140 - arches: [s390x, arm64]
141 # as above, allowing to have one config for different per arch mirrors
142 # security is optional, if not defined it is set to the same value as primary
143 security:
144 uri: http://security.ubuntu.com/ubuntu
145 # If search_dns is set for security the searched pattern is:
146 # <distro>-security-mirror
147

148 # if no mirrors are specified at all, or all lookups fail it will try
149 # to get them from the cloud datasource and if those neither provide one fall
150 # back to:
151 # primary: http://archive.ubuntu.com/ubuntu
152 # security: http://security.ubuntu.com/ubuntu
153

154 # 1.4 sources_list
155 #
156 # Provide a custom template for rendering sources.list
157 # without one provided cloud-init uses builtin templates for
158 # ubuntu and debian.
159 # Within these sources.list templates you can use the following replacement
160 # variables (all have sane Ubuntu defaults, but mirrors can be overwritten
161 # as needed (see above)):
162 # => $RELEASE, $MIRROR, $PRIMARY, $SECURITY
163 sources_list: | # written by cloud-init custom template
164 deb $MIRROR $RELEASE main restricted
165 deb-src $MIRROR $RELEASE main restricted
166 deb $PRIMARY $RELEASE universe restricted
167 deb $SECURITY $RELEASE-security multiverse
168

169 # 1.5 conf
170 #
171 # Any apt config string that will be made available to apt
172 # see the APT.CONF(5) man page for details what can be specified
173 conf: | # APT config
174 APT {
175 Get {
176 Assume-Yes "true";
177 Fix-Broken "true";
178 };
179 };
180

181 # 1.6 (http_|ftp_|https_)proxy
182 #
183 # Proxies are the most common apt.conf option, so that for simplified use
184 # there is a shortcut for those. Those get automatically translated into the
185 # correct Acquire::*::Proxy statements.
186 #
187 # note: proxy actually being a short synonym to http_proxy
188 proxy: http://[[user][:pass]@]host[:port]/
189 http_proxy: http://[[user][:pass]@]host[:port]/
190 ftp_proxy: ftp://[[user][:pass]@]host[:port]/
191 https_proxy: https://[[user][:pass]@]host[:port]/
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192

193 # 1.7 add_apt_repo_match
194 #
195 # 'source' entries in apt-sources that match this python regex
196 # expression will be passed to add-apt-repository
197 # The following example is also the builtin default if nothing is specified
198 add_apt_repo_match: '^[\w-]+:\w'
199

200

201 ##############################################################################
202 # Section 2: source list entries
203 #
204 # This is a dictionary (unlike most block/net which are lists)
205 #
206 # The key of each source entry is the filename and will be prepended by
207 # /etc/apt/sources.list.d/ if it doesn't start with a '/'.
208 # If it doesn't end with .list it will be appended so that apt picks up it's
209 # configuration.
210 #
211 # Whenever there is no content to be written into such a file, the key is
212 # not used as filename - yet it can still be used as index for merging
213 # configuration.
214 #
215 # The values inside the entries consost of the following optional entries:
216 # 'source': a sources.list entry (some variable replacements apply)
217 # 'keyid': providing a key to import via shortid or fingerprint
218 # 'key': providing a raw PGP key
219 # 'keyserver': specify an alternate keyserver to pull keys from that
220 # were specified by keyid
221

222 # This allows merging between multiple input files than a list like:
223 # cloud-config1
224 # sources:
225 # s1: {'key': 'key1', 'source': 'source1'}
226 # cloud-config2
227 # sources:
228 # s2: {'key': 'key2'}
229 # s1: {'keyserver': 'foo'}
230 # This would be merged to
231 # sources:
232 # s1:
233 # keyserver: foo
234 # key: key1
235 # source: source1
236 # s2:
237 # key: key2
238 #
239 # The following examples number the subfeatures per sources entry to ease
240 # identification in discussions.
241

242

243 sources:
244 curtin-dev-ppa.list:
245 # 2.1 source
246 #
247 # Creates a file in /etc/apt/sources.list.d/ for the sources list entry
248 # based on the key: "/etc/apt/sources.list.d/curtin-dev-ppa.list"
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249 source: "deb http://ppa.launchpad.net/curtin-dev/test-archive/ubuntu xenial main
→˓"

250

251 # 2.2 keyid
252 #
253 # Importing a gpg key for a given key id. Used keyserver defaults to
254 # keyserver.ubuntu.com
255 keyid: F430BBA5 # GPG key ID published on a key server
256

257 ignored1:
258 # 2.3 PPA shortcut
259 #
260 # Setup correct apt sources.list line and Auto-Import the signing key
261 # from LP
262 #
263 # See https://help.launchpad.net/Packaging/PPA for more information
264 # this requires 'add-apt-repository'. This will create a file in
265 # /etc/apt/sources.list.d automatically, therefore the key here is
266 # ignored as filename in those cases.
267 source: "ppa:curtin-dev/test-archive" # Quote the string
268

269 my-repo2.list:
270 # 2.4 replacement variables
271 #
272 # sources can use $MIRROR, $PRIMARY, $SECURITY and $RELEASE replacement
273 # variables.
274 # They will be replaced with the default or specified mirrors and the
275 # running release.
276 # The entry below would be possibly turned into:
277 # source: deb http://archive.ubuntu.com/ubuntu xenial multiverse
278 source: deb $MIRROR $RELEASE multiverse
279

280 my-repo3.list:
281 # this would have the same end effect as 'ppa:curtin-dev/test-archive'
282 source: "deb http://ppa.launchpad.net/curtin-dev/test-archive/ubuntu xenial main

→˓"
283 keyid: F430BBA5 # GPG key ID published on the key server
284 filename: curtin-dev-ppa.list
285

286 ignored2:
287 # 2.5 key only
288 #
289 # this would only import the key without adding a ppa or other source spec
290 # since this doesn't generate a source.list file the filename key is ignored
291 keyid: F430BBA5 # GPG key ID published on a key server
292

293 ignored3:
294 # 2.6 key id alternatives
295 #
296 # Keyid's can also be specified via their long fingerprints
297 keyid: B59D 5F15 97A5 04B7 E230 6DCA 0620 BBCF 0368 3F77
298

299 ignored4:
300 # 2.7 alternative keyservers
301 #
302 # One can also specify alternative keyservers to fetch keys from.
303 keyid: B59D 5F15 97A5 04B7 E230 6DCA 0620 BBCF 0368 3F77
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304 keyserver: pgp.mit.edu
305

306

307 my-repo4.list:
308 # 2.8 raw key
309 #
310 # The apt signing key can also be specified by providing a pgp public key
311 # block. Providing the PGP key this way is the most robust method for
312 # specifying a key, as it removes dependency on a remote key server.
313 #
314 # As with keyid's this can be specified with or without some actual source
315 # content.
316 key: | # The value needs to start with -----BEGIN PGP PUBLIC KEY BLOCK-----
317 -----BEGIN PGP PUBLIC KEY BLOCK-----
318 Version: SKS 1.0.10
319

320 mI0ESpA3UQEEALdZKVIMq0j6qWAXAyxSlF63SvPVIgxHPb9Nk0DZUixn+akqytxG4zKCONz6
321 qLjoBBfHnynyVLfT4ihg9an1PqxRnTO+JKQxl8NgKGz6Pon569GtAOdWNKw15XKinJTDLjnj
322 9y96ljJqRcpV9t/WsIcdJPcKFR5voHTEoABE2aEXABEBAAG0GUxhdW5jaHBhZCBQUEEgZm9y
323 IEFsZXN0aWOItgQTAQIAIAUCSpA3UQIbAwYLCQgHAwIEFQIIAwQWAgMBAh4BAheAAAoJEA7H
324 5Qi+CcVxWZ8D/1MyYvfj3FJPZUm2Yo1zZsQ657vHI9+pPouqflWOayRR9jbiyUFIn0VdQBrP
325 t0FwvnOFArUovUWoKAEdqR8hPy3M3APUZjl5K4cMZR/xaMQeQRZ5CHpS4DBKURKAHC0ltS5o
326 uBJKQOZm5iltJp15cgyIkBkGe8Mx18VFyVglAZey
327 =Y2oI
328 -----END PGP PUBLIC KEY BLOCK-----

1.7.19 Disk setup

1 # Cloud-init supports the creation of simple partition tables and file systems
2 # on devices.
3

4 # Default disk definitions for AWS
5 # --------------------------------
6 # (Not implemented yet, but provided for future documentation)
7

8 disk_setup:
9 ephmeral0:

10 table_type: 'mbr'
11 layout: True
12 overwrite: False
13

14 fs_setup:
15 - label: None,
16 filesystem: ext3
17 device: ephemeral0
18 partition: auto
19

20 # Default disk definitions for Microsoft Azure
21 # ------------------------------------------
22

23 device_aliases: {'ephemeral0': '/dev/sdb'}
24 disk_setup:
25 ephemeral0:
26 table_type: mbr
27 layout: True
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28 overwrite: False
29

30 fs_setup:
31 - label: ephemeral0
32 filesystem: ext4
33 device: ephemeral0.1
34 replace_fs: ntfs
35

36

37 # Data disks definitions for Microsoft Azure
38 # ------------------------------------------
39

40 disk_setup:
41 /dev/disk/azure/scsi1/lun0:
42 table_type: gpt
43 layout: True
44 overwrite: True
45

46 fs_setup:
47 - device: /dev/disk/azure/scsi1/lun0
48 partition: 1
49 filesystem: ext4
50

51

52 # Default disk definitions for SmartOS
53 # ------------------------------------
54

55 device_aliases: {'ephemeral0': '/dev/vdb'}
56 disk_setup:
57 ephemeral0:
58 table_type: mbr
59 layout: False
60 overwrite: False
61

62 fs_setup:
63 - label: ephemeral0
64 filesystem: ext4
65 device: ephemeral0.0
66

67 # Caveat for SmartOS: if ephemeral disk is not defined, then the disk will
68 # not be automatically added to the mounts.
69

70

71 # The default definition is used to make sure that the ephemeral storage is
72 # setup properly.
73

74 # "disk_setup": disk partitioning
75 # --------------------------------
76

77 # The disk_setup directive instructs Cloud-init to partition a disk. The format is:
78

79 disk_setup:
80 ephmeral0:
81 table_type: 'mbr'
82 layout: 'auto'
83 /dev/xvdh:
84 table_type: 'mbr'
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85 layout:
86 - 33
87 - [33, 82]
88 - 33
89 overwrite: True
90

91 # The format is a list of dicts of dicts. The first value is the name of the
92 # device and the subsequent values define how to create and layout the
93 # partition.
94 # The general format is:
95 # disk_setup:
96 # <DEVICE>:
97 # table_type: 'mbr'
98 # layout: <LAYOUT|BOOL>
99 # overwrite: <BOOL>

100 #
101 # Where:
102 # <DEVICE>: The name of the device. 'ephemeralX' and 'swap' are special
103 # values which are specific to the cloud. For these devices
104 # Cloud-init will look up what the real devices is and then
105 # use it.
106 #
107 # For other devices, the kernel device name is used. At this
108 # time only simply kernel devices are supported, meaning
109 # that device mapper and other targets may not work.
110 #
111 # Note: At this time, there is no handling or setup of
112 # device mapper targets.
113 #
114 # table_type=<TYPE>: Currently the following are supported:
115 # 'mbr': default and setups a MS-DOS partition table
116 # 'gpt': setups a GPT partition table
117 #
118 # Note: At this time only 'mbr' and 'gpt' partition tables
119 # are allowed. It is anticipated in the future that
120 # we'll also have "RAID" to create a mdadm RAID.
121 #
122 # layout={...}: The device layout. This is a list of values, with the
123 # percentage of disk that partition will take.
124 # Valid options are:
125 # [<SIZE>, [<SIZE>, <PART_TYPE]]
126 #
127 # Where <SIZE> is the _percentage_ of the disk to use, while
128 # <PART_TYPE> is the numerical value of the partition type.
129 #
130 # The following setups two partitions, with the first
131 # partition having a swap label, taking 1/3 of the disk space
132 # and the remainder being used as the second partition.
133 # /dev/xvdh':
134 # table_type: 'mbr'
135 # layout:
136 # - [33,82]
137 # - 66
138 # overwrite: True
139 #
140 # When layout is "true" it means single partition the entire
141 # device.
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142 #
143 # When layout is "false" it means don't partition or ignore
144 # existing partitioning.
145 #
146 # If layout is set to "true" and overwrite is set to "false",
147 # it will skip partitioning the device without a failure.
148 #
149 # overwrite=<BOOL>: This describes whether to ride with saftey's on and
150 # everything holstered.
151 #
152 # 'false' is the default, which means that:
153 # 1. The device will be checked for a partition table
154 # 2. The device will be checked for a file system
155 # 3. If either a partition of file system is found, then
156 # the operation will be _skipped_.
157 #
158 # 'true' is cowboy mode. There are no checks and things are
159 # done blindly. USE with caution, you can do things you
160 # really, really don't want to do.
161 #
162 #
163 # fs_setup: Setup the file system
164 # -------------------------------
165 #
166 # fs_setup describes the how the file systems are supposed to look.
167

168 fs_setup:
169 - label: ephemeral0
170 filesystem: 'ext3'
171 device: 'ephemeral0'
172 partition: 'auto'
173 - label: mylabl2
174 filesystem: 'ext4'
175 device: '/dev/xvda1'
176 - cmd: mkfs -t %(filesystem)s -L %(label)s %(device)s
177 label: mylabl3
178 filesystem: 'btrfs'
179 device: '/dev/xvdh'
180

181 # The general format is:
182 # fs_setup:
183 # - label: <LABEL>
184 # filesystem: <FS_TYPE>
185 # device: <DEVICE>
186 # partition: <PART_VALUE>
187 # overwrite: <OVERWRITE>
188 # replace_fs: <FS_TYPE>
189 #
190 # Where:
191 # <LABEL>: The file system label to be used. If set to None, no label is
192 # used.
193 #
194 # <FS_TYPE>: The file system type. It is assumed that the there
195 # will be a "mkfs.<FS_TYPE>" that behaves likes "mkfs". On a standard
196 # Ubuntu Cloud Image, this means that you have the option of ext{2,3,4},
197 # and vfat by default.
198 #
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199 # <DEVICE>: The device name. Special names of 'ephemeralX' or 'swap'
200 # are allowed and the actual device is acquired from the cloud datasource.
201 # When using 'ephemeralX' (i.e. ephemeral0), make sure to leave the
202 # label as 'ephemeralX' otherwise there may be issues with the mounting
203 # of the ephemeral storage layer.
204 #
205 # If you define the device as 'ephemeralX.Y' then Y will be interpetted
206 # as a partition value. However, ephermalX.0 is the _same_ as ephemeralX.
207 #
208 # <PART_VALUE>:
209 # Partition definitions are overwriten if you use the '<DEVICE>.Y' notation.
210 #
211 # The valid options are:
212 # "auto|any": tell cloud-init not to care whether there is a partition
213 # or not. Auto will use the first partition that does not contain a
214 # file system already. In the absence of a partition table, it will
215 # put it directly on the disk.
216 #
217 # "auto": If a file system that matches the specification in terms of
218 # label, type and device, then cloud-init will skip the creation of
219 # the file system.
220 #
221 # "any": If a file system that matches the file system type and device,
222 # then cloud-init will skip the creation of the file system.
223 #
224 # Devices are selected based on first-detected, starting with partitions
225 # and then the raw disk. Consider the following:
226 # NAME FSTYPE LABEL
227 # xvdb
228 # |-xvdb1 ext4
229 # |-xvdb2
230 # |-xvdb3 btrfs test
231 # \-xvdb4 ext4 test
232 #
233 # If you ask for 'auto', label of 'test, and file system of 'ext4'
234 # then cloud-init will select the 2nd partition, even though there
235 # is a partition match at the 4th partition.
236 #
237 # If you ask for 'any' and a label of 'test', then cloud-init will
238 # select the 1st partition.
239 #
240 # If you ask for 'auto' and don't define label, then cloud-init will
241 # select the 1st partition.
242 #
243 # In general, if you have a specific partition configuration in mind,
244 # you should define either the device or the partition number. 'auto'
245 # and 'any' are specifically intended for formating ephemeral storage or
246 # for simple schemes.
247 #
248 # "none": Put the file system directly on the device.
249 #
250 # <NUM>: where NUM is the actual partition number.
251 #
252 # <OVERWRITE>: Defines whether or not to overwrite any existing
253 # filesystem.
254 #
255 # "true": Indiscriminately destroy any pre-existing file system. Use at
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256 # your own peril.
257 #
258 # "false": If an existing file system exists, skip the creation.
259 #
260 # <REPLACE_FS>: This is a special directive, used for Microsoft Azure that
261 # instructs cloud-init to replace a file system of <FS_TYPE>. NOTE:
262 # unless you define a label, this requires the use of the 'any' partition
263 # directive.
264 #
265 # Behavior Caveat: The default behavior is to _check_ if the file system exists.
266 # If a file system matches the specification, then the operation is a no-op.

1.7.20 Register RedHat Subscription

1 #cloud-config
2

3 # register your Red Hat Enterprise Linux based operating system
4 #
5 # this cloud-init plugin is capable of registering by username
6 # and password *or* activation and org. Following a successfully
7 # registration you can:
8 # - auto-attach subscriptions
9 # - set the service level

10 # - add subscriptions based on its pool ID
11 # - enable yum repositories based on its repo id
12 # - disable yum repositories based on its repo id
13 # - alter the rhsm_baseurl and server-hostname in the
14 # /etc/rhsm/rhs.conf file
15

16 rh_subscription:
17 username: joe@foo.bar
18

19 ## Quote your password if it has symbols to be safe
20 password: '1234abcd'
21

22 ## If you prefer, you can use the activation key and
23 ## org instead of username and password. Be sure to
24 ## comment out username and password
25

26 #activation-key: foobar
27 #org: 12345
28

29 ## Uncomment to auto-attach subscriptions to your system
30 #auto-attach: True
31

32 ## Uncomment to set the service level for your
33 ## subscriptions
34 #service-level: self-support
35

36 ## Uncomment to add pools (needs to be a list of IDs)
37 #add-pool: []
38

39 ## Uncomment to add or remove yum repos
40 ## (needs to be a list of repo IDs)
41 #enable-repo: []
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42 #disable-repo: []
43

44 ## Uncomment to alter the baseurl in /etc/rhsm/rhsm.conf
45 #rhsm-baseurl: http://url
46

47 ## Uncomment to alter the server hostname in
48 ## /etc/rhsm/rhsm.conf
49 #server-hostname: foo.bar.com

1.7.21 Configure data sources

1 # Documentation on data sources configuration options
2 datasource:
3 # Ec2
4 Ec2:
5 # timeout: the timeout value for a request at metadata service
6 timeout : 50
7 # The length in seconds to wait before giving up on the metadata
8 # service. The actual total wait could be up to
9 # len(resolvable_metadata_urls)*timeout

10 max_wait : 120
11

12 #metadata_url: a list of URLs to check for metadata services
13 metadata_urls:
14 - http://169.254.169.254:80
15 - http://instance-data:8773
16

17 MAAS:
18 timeout : 50
19 max_wait : 120
20

21 # there are no default values for metadata_url or oauth credentials
22 # If no credentials are present, non-authed attempts will be made.
23 metadata_url: http://mass-host.localdomain/source
24 consumer_key: Xh234sdkljf
25 token_key: kjfhgb3n
26 token_secret: 24uysdfx1w4
27

28 NoCloud:
29 # default seedfrom is None
30 # if found, then it should contain a url with:
31 # <url>/user-data and <url>/meta-data
32 # seedfrom: http://my.example.com/i-abcde
33 seedfrom: None
34

35 # fs_label: the label on filesystems to be searched for NoCloud source
36 fs_label: cidata
37

38 # these are optional, but allow you to basically provide a datasource
39 # right here
40 user-data: |
41 # This is the user-data verbatim
42 meta-data:
43 instance-id: i-87018aed
44 local-hostname: myhost.internal
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45

46 Azure:
47 agent_command: [service, walinuxagent, start]
48 set_hostname: True
49 hostname_bounce:
50 interface: eth0
51 policy: on # [can be 'on', 'off' or 'force']
52

53 SmartOS:
54 # For KVM guests:
55 # Smart OS datasource works over a serial console interacting with
56 # a server on the other end. By default, the second serial console is the
57 # device. SmartOS also uses a serial timeout of 60 seconds.
58 serial_device: /dev/ttyS1
59 serial_timeout: 60
60

61 # For LX-Brand Zones guests:
62 # Smart OS datasource works over a socket interacting with
63 # the host on the other end. By default, the socket file is in
64 # the native .zoncontrol directory.
65 metadata_sockfile: /native/.zonecontrol/metadata.sock
66

67 # a list of keys that will not be base64 decoded even if base64_all
68 no_base64_decode: ['root_authorized_keys', 'motd_sys_info',
69 'iptables_disable']
70 # a plaintext, comma delimited list of keys whose values are b64 encoded
71 base64_keys: []
72 # a boolean indicating that all keys not in 'no_base64_decode' are encoded
73 base64_all: False

1.7.22 Create partitions and filesystems

1 # Cloud-init supports the creation of simple partition tables and file systems
2 # on devices.
3

4 # Default disk definitions for AWS
5 # --------------------------------
6 # (Not implemented yet, but provided for future documentation)
7

8 disk_setup:
9 ephmeral0:

10 table_type: 'mbr'
11 layout: True
12 overwrite: False
13

14 fs_setup:
15 - label: None,
16 filesystem: ext3
17 device: ephemeral0
18 partition: auto
19

20 # Default disk definitions for Microsoft Azure
21 # ------------------------------------------
22

23 device_aliases: {'ephemeral0': '/dev/sdb'}
(continues on next page)
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24 disk_setup:
25 ephemeral0:
26 table_type: mbr
27 layout: True
28 overwrite: False
29

30 fs_setup:
31 - label: ephemeral0
32 filesystem: ext4
33 device: ephemeral0.1
34 replace_fs: ntfs
35

36

37 # Data disks definitions for Microsoft Azure
38 # ------------------------------------------
39

40 disk_setup:
41 /dev/disk/azure/scsi1/lun0:
42 table_type: gpt
43 layout: True
44 overwrite: True
45

46 fs_setup:
47 - device: /dev/disk/azure/scsi1/lun0
48 partition: 1
49 filesystem: ext4
50

51

52 # Default disk definitions for SmartOS
53 # ------------------------------------
54

55 device_aliases: {'ephemeral0': '/dev/vdb'}
56 disk_setup:
57 ephemeral0:
58 table_type: mbr
59 layout: False
60 overwrite: False
61

62 fs_setup:
63 - label: ephemeral0
64 filesystem: ext4
65 device: ephemeral0.0
66

67 # Caveat for SmartOS: if ephemeral disk is not defined, then the disk will
68 # not be automatically added to the mounts.
69

70

71 # The default definition is used to make sure that the ephemeral storage is
72 # setup properly.
73

74 # "disk_setup": disk partitioning
75 # --------------------------------
76

77 # The disk_setup directive instructs Cloud-init to partition a disk. The format is:
78

79 disk_setup:
80 ephmeral0:
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81 table_type: 'mbr'
82 layout: 'auto'
83 /dev/xvdh:
84 table_type: 'mbr'
85 layout:
86 - 33
87 - [33, 82]
88 - 33
89 overwrite: True
90

91 # The format is a list of dicts of dicts. The first value is the name of the
92 # device and the subsequent values define how to create and layout the
93 # partition.
94 # The general format is:
95 # disk_setup:
96 # <DEVICE>:
97 # table_type: 'mbr'
98 # layout: <LAYOUT|BOOL>
99 # overwrite: <BOOL>

100 #
101 # Where:
102 # <DEVICE>: The name of the device. 'ephemeralX' and 'swap' are special
103 # values which are specific to the cloud. For these devices
104 # Cloud-init will look up what the real devices is and then
105 # use it.
106 #
107 # For other devices, the kernel device name is used. At this
108 # time only simply kernel devices are supported, meaning
109 # that device mapper and other targets may not work.
110 #
111 # Note: At this time, there is no handling or setup of
112 # device mapper targets.
113 #
114 # table_type=<TYPE>: Currently the following are supported:
115 # 'mbr': default and setups a MS-DOS partition table
116 # 'gpt': setups a GPT partition table
117 #
118 # Note: At this time only 'mbr' and 'gpt' partition tables
119 # are allowed. It is anticipated in the future that
120 # we'll also have "RAID" to create a mdadm RAID.
121 #
122 # layout={...}: The device layout. This is a list of values, with the
123 # percentage of disk that partition will take.
124 # Valid options are:
125 # [<SIZE>, [<SIZE>, <PART_TYPE]]
126 #
127 # Where <SIZE> is the _percentage_ of the disk to use, while
128 # <PART_TYPE> is the numerical value of the partition type.
129 #
130 # The following setups two partitions, with the first
131 # partition having a swap label, taking 1/3 of the disk space
132 # and the remainder being used as the second partition.
133 # /dev/xvdh':
134 # table_type: 'mbr'
135 # layout:
136 # - [33,82]
137 # - 66
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138 # overwrite: True
139 #
140 # When layout is "true" it means single partition the entire
141 # device.
142 #
143 # When layout is "false" it means don't partition or ignore
144 # existing partitioning.
145 #
146 # If layout is set to "true" and overwrite is set to "false",
147 # it will skip partitioning the device without a failure.
148 #
149 # overwrite=<BOOL>: This describes whether to ride with saftey's on and
150 # everything holstered.
151 #
152 # 'false' is the default, which means that:
153 # 1. The device will be checked for a partition table
154 # 2. The device will be checked for a file system
155 # 3. If either a partition of file system is found, then
156 # the operation will be _skipped_.
157 #
158 # 'true' is cowboy mode. There are no checks and things are
159 # done blindly. USE with caution, you can do things you
160 # really, really don't want to do.
161 #
162 #
163 # fs_setup: Setup the file system
164 # -------------------------------
165 #
166 # fs_setup describes the how the file systems are supposed to look.
167

168 fs_setup:
169 - label: ephemeral0
170 filesystem: 'ext3'
171 device: 'ephemeral0'
172 partition: 'auto'
173 - label: mylabl2
174 filesystem: 'ext4'
175 device: '/dev/xvda1'
176 - cmd: mkfs -t %(filesystem)s -L %(label)s %(device)s
177 label: mylabl3
178 filesystem: 'btrfs'
179 device: '/dev/xvdh'
180

181 # The general format is:
182 # fs_setup:
183 # - label: <LABEL>
184 # filesystem: <FS_TYPE>
185 # device: <DEVICE>
186 # partition: <PART_VALUE>
187 # overwrite: <OVERWRITE>
188 # replace_fs: <FS_TYPE>
189 #
190 # Where:
191 # <LABEL>: The file system label to be used. If set to None, no label is
192 # used.
193 #
194 # <FS_TYPE>: The file system type. It is assumed that the there

(continues on next page)

1.7. Cloud config examples 49



cloud-init, Release 20.2

(continued from previous page)

195 # will be a "mkfs.<FS_TYPE>" that behaves likes "mkfs". On a standard
196 # Ubuntu Cloud Image, this means that you have the option of ext{2,3,4},
197 # and vfat by default.
198 #
199 # <DEVICE>: The device name. Special names of 'ephemeralX' or 'swap'
200 # are allowed and the actual device is acquired from the cloud datasource.
201 # When using 'ephemeralX' (i.e. ephemeral0), make sure to leave the
202 # label as 'ephemeralX' otherwise there may be issues with the mounting
203 # of the ephemeral storage layer.
204 #
205 # If you define the device as 'ephemeralX.Y' then Y will be interpetted
206 # as a partition value. However, ephermalX.0 is the _same_ as ephemeralX.
207 #
208 # <PART_VALUE>:
209 # Partition definitions are overwriten if you use the '<DEVICE>.Y' notation.
210 #
211 # The valid options are:
212 # "auto|any": tell cloud-init not to care whether there is a partition
213 # or not. Auto will use the first partition that does not contain a
214 # file system already. In the absence of a partition table, it will
215 # put it directly on the disk.
216 #
217 # "auto": If a file system that matches the specification in terms of
218 # label, type and device, then cloud-init will skip the creation of
219 # the file system.
220 #
221 # "any": If a file system that matches the file system type and device,
222 # then cloud-init will skip the creation of the file system.
223 #
224 # Devices are selected based on first-detected, starting with partitions
225 # and then the raw disk. Consider the following:
226 # NAME FSTYPE LABEL
227 # xvdb
228 # |-xvdb1 ext4
229 # |-xvdb2
230 # |-xvdb3 btrfs test
231 # \-xvdb4 ext4 test
232 #
233 # If you ask for 'auto', label of 'test, and file system of 'ext4'
234 # then cloud-init will select the 2nd partition, even though there
235 # is a partition match at the 4th partition.
236 #
237 # If you ask for 'any' and a label of 'test', then cloud-init will
238 # select the 1st partition.
239 #
240 # If you ask for 'auto' and don't define label, then cloud-init will
241 # select the 1st partition.
242 #
243 # In general, if you have a specific partition configuration in mind,
244 # you should define either the device or the partition number. 'auto'
245 # and 'any' are specifically intended for formating ephemeral storage or
246 # for simple schemes.
247 #
248 # "none": Put the file system directly on the device.
249 #
250 # <NUM>: where NUM is the actual partition number.
251 #

(continues on next page)
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(continued from previous page)

252 # <OVERWRITE>: Defines whether or not to overwrite any existing
253 # filesystem.
254 #
255 # "true": Indiscriminately destroy any pre-existing file system. Use at
256 # your own peril.
257 #
258 # "false": If an existing file system exists, skip the creation.
259 #
260 # <REPLACE_FS>: This is a special directive, used for Microsoft Azure that
261 # instructs cloud-init to replace a file system of <FS_TYPE>. NOTE:
262 # unless you define a label, this requires the use of the 'any' partition
263 # directive.
264 #
265 # Behavior Caveat: The default behavior is to _check_ if the file system exists.
266 # If a file system matches the specification, then the operation is a no-op.

1.7.23 Grow partitions

1 #cloud-config
2 #
3 # growpart entry is a dict, if it is not present at all
4 # in config, then the default is used ({'mode': 'auto', 'devices': ['/']})
5 #
6 # mode:
7 # values:
8 # * auto: use any option possible (any available)
9 # if none are available, do not warn, but debug.

10 # * growpart: use growpart to grow partitions
11 # if growpart is not available, this is an error.
12 # * off, false
13 #
14 # devices:
15 # a list of things to resize.
16 # items can be filesystem paths or devices (in /dev)
17 # examples:
18 # devices: [/, /dev/vdb1]
19 #
20 # ignore_growroot_disabled:
21 # a boolean, default is false.
22 # if the file /etc/growroot-disabled exists, then cloud-init will not grow
23 # the root partition. This is to allow a single file to disable both
24 # cloud-initramfs-growroot and cloud-init's growroot support.
25 #
26 # true indicates that /etc/growroot-disabled should be ignored
27 #
28 growpart:
29 mode: auto
30 devices: ['/']
31 ignore_growroot_disabled: false

1.8 Modules
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– Salt Minion

– Scripts Per Boot

– Scripts Per Instance

– Scripts Per Once

– Scripts User

– Scripts Vendor

– Seed Random

– Set Hostname

– Set Passwords

– Snap

– Spacewalk

– SSH

* Authorized Keys

* Host Keys

– SSH Authkey Fingerprints

– SSH Import Id

– Timezone

– Ubuntu Advantage

– Ubuntu Drivers

– Update Etc Hosts

– Update Hostname

– Users and Groups

– Write Files

– Yum Add Repo

1.8.1 Apt Configure

Summary: configure apt

This module handles both configuration of apt options and adding source lists. There are configuration options such
as apt_get_wrapper and apt_get_command that control how cloud-init invokes apt-get. These configuration
options are handled on a per-distro basis, so consult documentation for cloud-init’s distro support for instructions on
using these config options.

Note: To ensure that apt configuration is valid yaml, any strings containing special characters, especially : should be
quoted.

Note: For more information about apt configuration, see the Additional apt configuration example.
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Preserve sources.list:

By default, cloud-init will generate a new sources list in /etc/apt/sources.list.d based on any changes
specified in cloud config. To disable this behavior and preserve the sources list from the pristine image, set
preserve_sources_list to true.

Note: The preserve_sources_list option overrides all other config keys that would alter sources.list
or sources.list.d, except for additional sources to be added to sources.list.d.

Disable source suites:

Entries in the sources list can be disabled using disable_suites, which takes a list of suites to be disabled. If the
string $RELEASE is present in a suite in the disable_suites list, it will be replaced with the release name. If a
suite specified in disable_suites is not present in sources.list it will be ignored. For convenience, several
aliases are provided for disable_suites:

• updates => $RELEASE-updates

• backports => $RELEASE-backports

• security => $RELEASE-security

• proposed => $RELEASE-proposed

• release => $RELEASE

Note: When a suite is disabled using disable_suites, its entry in sources.list is not deleted; it is just
commented out.

Configure primary and security mirrors:

The primary and security archive mirrors can be specified using the primary and security keys, respectively.
Both the primary and security keys take a list of configs, allowing mirrors to be specified on a per-architecture
basis. Each config is a dictionary which must have an entry for arches, specifying which architectures that config
entry is for. The keyword default applies to any architecture not explicitly listed. The mirror url can be specified
with the uri key, or a list of mirrors to check can be provided in order, with the first mirror that can be resolved being
selected. This allows the same configuration to be used in different environment, with different hosts used for a local
apt mirror. If no mirror is provided by uri or search, search_dns may be used to search for dns names in the
format <distro>-mirror in each of the following:

• fqdn of this host per cloud metadata

• localdomain

• domains listed in /etc/resolv.conf

If there is a dns entry for <distro>-mirror, then it is assumed that there is a distro mirror at http://
<distro>-mirror.<domain>/<distro>. If the primary key is defined, but not the security key, then
then configuration for primary is also used for security. If search_dns is used for the security key, the
search pattern will be. <distro>-security-mirror.

If no mirrors are specified, or all lookups fail, then default mirrors defined in the datasource are used. If none are
present in the datasource either the following defaults are used:

• primary: http://archive.ubuntu.com/ubuntu

• security: http://security.ubuntu.com/ubuntu

Specify sources.list template:

54 Chapter 1. Getting help



cloud-init, Release 20.2

A custom template for rendering sources.list can be specefied with sources_list. If no sources_list
template is given, cloud-init will use sane default. Within this template, the following strings will be replaced with the
appropriate values:

• $MIRROR

• $RELEASE

• $PRIMARY

• $SECURITY

Pass configuration to apt:

Apt configuration can be specified using conf. Configuration is specified as a string. For multiline apt configuration,
make sure to follow yaml syntax.

Configure apt proxy:

Proxy configuration for apt can be specified using conf, but proxy config keys also exist for convenience. The proxy
config keys, http_proxy, ftp_proxy, and https_proxy may be used to specify a proxy for http, ftp and https
protocols respectively. The proxy key also exists as an alias for http_proxy. Proxy url is specified in the format
<protocol>://[[user][:pass]@]host[:port]/.

Add apt repos by regex:

All source entries in apt-sources that match regex in add_apt_repo_match will be added to the system using
add-apt-repository. If add_apt_repo_match is not specified, it defaults to ^[\w-]+:\w

Add source list entries:

Source list entries can be specified as a dictionary under the sources config key, with key in the dict representing a
different source file. The key of each source entry will be used as an id that can be referenced in other config entries,
as well as the filename for the source’s configuration under /etc/apt/sources.list.d. If the name does not
end with .list, it will be appended. If there is no configuration for a key in sources, no file will be written, but
the key may still be referred to as an id in other sources entries.

Each entry under sources is a dictionary which may contain any of the following optional keys:

• source: a sources.list entry (some variable replacements apply)

• keyid: a key to import via shortid or fingerprint

• key: a raw PGP key

• keyserver: alternate keyserver to pull keyid key from

The source key supports variable replacements for the following strings:

• $MIRROR

• $PRIMARY

• $SECURITY

• $RELEASE

Internal name: cc_apt_configure

Module frequency: per instance

Supported distros: ubuntu, debian

Config keys:
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apt:
preserve_sources_list: <true/false>
disable_suites:

- $RELEASE-updates
- backports
- $RELEASE
- mysuite

primary:
- arches:

- amd64
- i386
- default

uri: "http://us.archive.ubuntu.com/ubuntu"
search:

- "http://cool.but-sometimes-unreachable.com/ubuntu"
- "http://us.archive.ubuntu.com/ubuntu"

search_dns: <true/false>
- arches:

- s390x
- arm64

uri: "http://archive-to-use-for-arm64.example.com/ubuntu"
security:

- arches:
- default

search_dns: true
sources_list: |

deb $MIRROR $RELEASE main restricted
deb-src $MIRROR $RELEASE main restricted
deb $PRIMARY $RELEASE universe restricted
deb $SECURITY $RELEASE-security multiverse

debconf_selections:
set1: the-package the-package/some-flag boolean true

conf: |
APT {

Get {
Assume-Yes "true";
Fix-Broken "true";

}
}

proxy: "http://[[user][:pass]@]host[:port]/"
http_proxy: "http://[[user][:pass]@]host[:port]/"
ftp_proxy: "ftp://[[user][:pass]@]host[:port]/"
https_proxy: "https://[[user][:pass]@]host[:port]/"
sources:

source1:
keyid: "keyid"
keyserver: "keyserverurl"
source: "deb http://<url>/ xenial main"

source2:
source: "ppa:<ppa-name>"

source3:
source: "deb $MIRROR $RELEASE multiverse"
key: |

------BEGIN PGP PUBLIC KEY BLOCK-------
<key data>
------END PGP PUBLIC KEY BLOCK-------
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1.8.2 Apt Pipelining

Summary: configure apt pipelining

This module configures apt’s Acquite::http::Pipeline-Depth option, whcih controls how apt handles
HTTP pipelining. It may be useful for pipelining to be disabled, because some web servers, such as S3 do not
pipeline properly (LP: #948461). The apt_pipelining config key may be set to false to disable pipelining
altogether. This is the default behavior. If it is set to none, unchanged, or os, no change will be made to apt
configuration and the default setting for the distro will be used. The pipeline depth can also be manually specified by
setting apt_pipelining to a number. However, this is not recommended.

Internal name: cc_apt_pipelining

Module frequency: per instance

Supported distros: ubuntu, debian

Config keys:: apt_pipelining: <false/none/unchanged/os/number>

1.8.3 Bootcmd

Summary: Run arbitrary commands early in the boot process

This module runs arbitrary commands very early in the boot process, only slightly after a boothook would run. This
is very similar to a boothook, but more user friendly. The environment variable INSTANCE_ID will be set to the
current instance id for all run commands. Commands can be specified either as lists or strings. For invocation details,
see runcmd.

Note: bootcmd should only be used for things that could not be done later in the boot process.

Note: when writing files, do not use /tmp dir as it races with systemd-tmpfiles-clean LP: #1707222. Use /run/somedir
instead.

Internal name: cc_bootcmd

Module frequency: always

Supported distros: all

Config schema: bootcmd: (array of (array of string)/(string))

Examples:

bootcmd:
- echo 192.168.1.130 us.archive.ubuntu.com > /etc/hosts
- [ cloud-init-per, once, mymkfs, mkfs, /dev/vdb ]

1.8.4 Byobu

Summary: enable/disable byobu system wide and for default user

This module controls whether byobu is enabled or disabled system wide and for the default system user. If byobu is to
be enabled, this module will ensure it is installed. Likewise, if it is to be disabled, it will be removed if installed.

Valid configuration options for this module are:
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• enable-system: enable byobu system wide

• enable-user: enable byobu for the default user

• disable-system: disable byobu system wide

• disable-user: disable byobu for the default user

• enable: enable byobu both system wide and for default user

• disable: disable byobu for all users

• user: alias for enable-user

• system: alias for enable-system

Internal name: cc_byobu

Module frequency: per instance

Supported distros: ubuntu, debian

Config keys:

byobu_by_default: <user/system>

1.8.5 CA Certs

Summary: add ca certificates

This module adds CA certificates to /etc/ca-certificates.conf and updates the ssl cert cache using
update-ca-certificates. The default certificates can be removed from the system with the configuration
option remove-defaults.

Note: certificates must be specified using valid yaml. in order to specify a multiline certificate, the yaml multiline list
syntax must be used

Internal name: cc_ca_certs

Module frequency: per instance

Supported distros: ubuntu, debian

Config keys:

ca-certs:
remove-defaults: <true/false>
trusted:

- <single line cert>
- |
-----BEGIN CERTIFICATE-----
YOUR-ORGS-TRUSTED-CA-CERT-HERE
-----END CERTIFICATE-----

1.8.6 Chef

Summary: module that configures, starts and installs chef.
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This module enables chef to be installed (from packages or from gems, or from omnibus). Before this occurs chef con-
figurations are written to disk (validation.pem, client.pem, firstboot.json, client.rb), and needed chef folders/directories
are created (/etc/chef and /var/log/chef and so-on). Then once installing proceeds correctly if configured chef will be
started (in daemon mode or in non-daemon mode) and then once that has finished (if ran in non-daemon mode this
will be when chef finishes converging, if ran in daemon mode then no further actions are possible since chef will have
forked into its own process) then a post run function can run that can do finishing activities (such as removing the
validation pem file).

Internal name: cc_chef

Module frequency: per always

Supported distros: all

Config keys:

chef:
directories: (defaulting to /etc/chef, /var/log/chef, /var/lib/chef,

/var/cache/chef, /var/backups/chef, /var/run/chef)
validation_cert: (optional string to be written to file validation_key)

special value 'system' means set use existing file
validation_key: (optional the path for validation_cert. default

/etc/chef/validation.pem)
firstboot_path: (path to write run_list and initial_attributes keys that

should also be present in this configuration, defaults
to /etc/chef/firstboot.json)

exec: boolean to run or not run chef (defaults to false, unless
a gem installed is requested
where this will then default
to true)

chef.rb template keys (if falsey, then will be skipped and not
written to /etc/chef/client.rb)

chef:
client_key:
encrypted_data_bag_secret:
environment:
file_backup_path:
file_cache_path:
json_attribs:
log_level:
log_location:
node_name:
omnibus_url:
omnibus_url_retries:
omnibus_version:
pid_file:
server_url:
show_time:
ssl_verify_mode:
validation_cert:
validation_key:
validation_name:

1.8.7 Debug

Summary: helper to debug cloud-init internal datastructures.
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This module will enable for outputting various internal information that cloud-init sources provide to either a file or to
the output console/log location that this cloud-init has been configured with when running.

Note: Log configurations are not output.

Internal name: cc_debug

Module frequency: per instance

Supported distros: all

Config keys:

debug:
verbose: true/false (defaulting to true)
output: (location to write output, defaulting to console + log)

1.8.8 Disable EC2 Metadata

Summary: disable aws ec2 metadata

This module can disable the ec2 datasource by rejecting the route to 169.254.169.254, the usual route to the
datasource. This module is disabled by default.

Internal name: cc_disable_ec2_metadata

Module frequency: per always

Supported distros: all

Config keys:

disable_ec2_metadata: <true/false>

1.8.9 Disk Setup

Summary: configure partitions and filesystems

This module is able to configure simple partition tables and filesystems.

Note: for more detail about configuration options for disk setup, see the disk setup example

For convenience, aliases can be specified for disks using the device_aliases config key, which takes a dictionary
of alias: path mappings. There are automatic aliases for swap and ephemeral<X>, where swap will always refer
to the active swap partition and ephemeral<X> will refer to the block device of the ephemeral image.

Disk partitioning is done using the disk_setup directive. This config directive accepts a dictionary where each
key is either a path to a block device or an alias specified in device_aliases, and each value is the configuration
options for the device. The table_type option specifies the partition table type, either mbr or gpt. The layout
option specifies how partitions on the device are to be arranged. If layout is set to true, a single partition using
all the space on the device will be created. If set to false, no partitions will be created. Partitions can be specified
by providing a list to layout, where each entry in the list is either a size or a list containing a size and the numerical
value for a partition type. The size for partitions is specified in percentage of disk space, not in bytes (e.g. a size of
33 would take up 1/3 of the disk space). The overwrite option controls whether this module tries to be safe about
writing partition talbes or not. If overwrite: false is set, the device will be checked for a partition table and
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for a file system and if either is found, the operation will be skipped. If overwrite: true is set, no checks will
be performed.

Note: Using overwrite: true is dangerous and can lead to data loss, so double check that the correct device
has been specified if using this option.

File system configuration is done using the fs_setup directive. This config directive accepts a list of filesystem
configs. The device to create the filesystem on may be specified either as a path or as an alias in the format <alias
name>.<y> where <y> denotes the partition number on the device. The partition can also be specified by setting
partition to the desired partition number. The partition option may also be set to auto, in which this module
will search for the existance of a filesystem matching the label, type and device of the fs_setup entry and
will skip creating the filesystem if one is found. The partition option may also be set to any, in which case any
file system that matches type and device will cause this module to skip filesystem creation for the fs_setup
entry, regardless of label matching or not. To write a filesystem directly to a device, use partition: none. A
label can be specified for the filesystem using label, and the filesystem type can be specified using filesystem.

Note: If specifying device using the <device name>.<partition number> format, the value of
partition will be overwritten.

Note: Using overwrite: true for filesystems is dangerous and can lead to data loss, so double check the entry
in fs_setup.

Note: replace_fs is ignored unless partition is auto or any.

Internal name: cc_disk_setup

Module frequency: per instance

Supported distros: all

Config keys:

device_aliases:
<alias name>: <device path>

disk_setup:
<alias name/path>:

table_type: <'mbr'/'gpt'>
layout:

- [33,82]
- 66

overwrite: <true/false>
fs_setup:

- label: <label>
filesystem: <filesystem type>
device: <device>
partition: <"auto"/"any"/"none"/<partition number>>
overwrite: <true/false>
replace_fs: <filesystem type>
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1.8.10 Emit Upstart

Summary: emit upstart configuration

Emit upstart configuration for cloud-init modules on upstart based systems. No user configuration should be required.

Internal name: cc_emit_upstart

Module frequency: per always

Supported distros: ubuntu, debian

1.8.11 Fan

Summary: configure ubuntu fan networking

This module installs, configures and starts the ubuntu fan network system. For more information about Ubuntu Fan,
see: https://wiki.ubuntu.com/FanNetworking.

If cloud-init sees a fan entry in cloud-config it will:

• write config_path with the contents of the config key

• install the package ubuntu-fan if it is not installed

• ensure the service is started (or restarted if was previously running)

Internal name: cc_fan

Module frequency: per instance

Supported distros: ubuntu

Config keys:

fan:
config: |

# fan 240
10.0.0.0/8 eth0/16 dhcp
10.0.0.0/8 eth1/16 dhcp off
# fan 241
241.0.0.0/8 eth0/16 dhcp

config_path: /etc/network/fan

1.8.12 Final Message

Summary: output final message when cloud-init has finished

This module configures the final message that cloud-init writes. The message is specified as a jinja template with the
following variables set:

• version: cloud-init version

• timestamp: time at cloud-init finish

• datasource: cloud-init data source

• uptime: system uptime

Internal name: cc_final_message

Module frequency: per always
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Supported distros: all

Config keys:

final_message: <message>

1.8.13 Foo

Summary: example module

Example to show module structure. Does not do anything.

Internal name: cc_foo

Module frequency: per instance

Supported distros: all

1.8.14 Growpart

Summary: grow partitions

Growpart resizes partitions to fill the available disk space. This is useful for cloud instances with a larger amount of
disk space available than the pristine image uses, as it allows the instance to automatically make use of the extra space.

The devices run growpart on are specified as a list under the devices key. Each entry in the devices list can be either
the path to the device’s mountpoint in the filesystem or a path to the block device in /dev.

The utility to use for resizing can be selected using the mode config key. If mode key is set to auto, then any
available utility (either growpart or BSD gpart) will be used. If neither utility is available, no error will be raised.
If mode is set to growpart, then the growpart utility will be used. If this utility is not available on the system,
this will result in an error. If mode is set to off or false, then cc_growpart will take no action.

There is some functionality overlap between this module and the growroot functionality of
cloud-initramfs-tools. However, there are some situations where one tool is able to function and the
other is not. The default configuration for both should work for most cloud instances. To explicitly prevent
cloud-initramfs-tools from running growroot, the file /etc/growroot-disabled can be created.
By default, both growroot and cc_growpart will check for the existance of this file and will not run if it is
present. However, this file can be ignored for cc_growpart by setting ignore_growroot_disabled to
true. For more information on cloud-initramfs-tools see: https://launchpad.net/cloud-initramfs-tools

Growpart is enabled by default on the root partition. The default config for growpart is:

growpart:
mode: auto
devices: ["/"]
ignore_growroot_disabled: false

Internal name: cc_growpart

Module frequency: per always

Supported distros: all

Config keys:

1.8. Modules 63

https://launchpad.net/cloud-initramfs-tools


cloud-init, Release 20.2

growpart:
mode: <auto/growpart/off/false>
devices:

- "/"
- "/dev/vdb1"

ignore_growroot_disabled: <true/false>

1.8.15 Grub Dpkg

Summary: configure grub debconf installation device

Configure which device is used as the target for grub installation. This module should work correctly by default
without any user configuration. It can be enabled/disabled using the enabled config key in the grub_dpkg config
dict. The global config key grub-dpkg is an alias for grub_dpkg. If no installation device is specified this module
will look for the first existing device in:

• /dev/sda

• /dev/vda

• /dev/xvda

• /dev/sda1

• /dev/vda1

• /dev/xvda1

Internal name: cc_grub_dpkg

Module frequency: per instance

Supported distros: ubuntu, debian

Config keys:

grub_dpkg:
enabled: <true/false>
grub-pc/install_devices: <devices>
grub-pc/install_devices_empty: <devices>

grub-dpkg: (alias for grub_dpkg)

1.8.16 Keys to Console

Summary: control which SSH keys may be written to console

For security reasons it may be desirable not to write SSH fingerprints and keys to the console. To avoid the fingerprint
of types of SSH keys being written to console the ssh_fp_console_blacklist config key can be used. By
default all types of keys will have their fingerprints written to console. To avoid keys of a key type being written to
console the ssh_key_console_blacklist config key can be used. By default ssh-dss keys are not written
to console.

Internal name: cc_keys_to_console

Module frequency: per instance

Supported distros: all

Config keys:
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ssh_fp_console_blacklist: <list of key types>
ssh_key_console_blacklist: <list of key types>

1.8.17 Landscape

Summary: install and configure landscape client

This module installs and configures landscape-client. The landscape client will only be installed if the key
landscape is present in config. Landscape client configuration is given under the client key under the main
landscape config key. The config parameters are not interpreted by cloud-init, but rather are converted into a
ConfigObj formatted file and written out to /etc/landscape/client.conf.

The following default client config is provided, but can be overridden:

landscape:
client:

log_level: "info"
url: "https://landscape.canonical.com/message-system"
ping_url: "http://landscape.canoncial.com/ping"
data_path: "/var/lib/landscape/client"

Note: see landscape documentation for client config keys

Note: if tags is defined, its contents should be a string delimited with , rather than a list

Internal name: cc_landscape

Module frequency: per instance

Supported distros: ubuntu

Config keys:

landscape:
client:

url: "https://landscape.canonical.com/message-system"
ping_url: "http://landscape.canonical.com/ping"
data_path: "/var/lib/landscape/client"
http_proxy: "http://my.proxy.com/foobar"
https_proxy: "https://my.proxy.com/foobar"
tags: "server,cloud"
computer_title: "footitle"
registration_key: "fookey"
account_name: "fooaccount"

1.8.18 Locale

Summary: set system locale

Configure the system locale and apply it system wide. By default use the locale specified by the datasource.

Internal name: cc_locale

Module frequency: per instance
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Supported distros: all

Config keys:

locale: <locale str>
locale_configfile: <path to locale config file>

1.8.19 LXD

Summary: configure lxd with lxd init and optionally lxd-bridge

This module configures lxd with user specified options using lxd init. If lxd is not present on the system but lxd
configuration is provided, then lxd will be installed. If the selected storage backend is zfs, then zfs will be installed if
missing. If network bridge configuration is provided, then lxd-bridge will be configured accordingly.

Internal name: cc_lxd

Module frequency: per instance

Supported distros: ubuntu

Config keys:

lxd:
init:

network_address: <ip addr>
network_port: <port>
storage_backend: <zfs/dir>
storage_create_device: <dev>
storage_create_loop: <size>
storage_pool: <name>
trust_password: <password>

bridge:
mode: <new, existing or none>
name: <name>
ipv4_address: <ip addr>
ipv4_netmask: <cidr>
ipv4_dhcp_first: <ip addr>
ipv4_dhcp_last: <ip addr>
ipv4_dhcp_leases: <size>
ipv4_nat: <bool>
ipv6_address: <ip addr>
ipv6_netmask: <cidr>
ipv6_nat: <bool>
domain: <domain>

1.8.20 Mcollective

Summary: install, configure and start mcollective

This module installs, configures and starts mcollective. If the mcollective key is present in config, then mcollective
will be installed and started.

Configuration for mcollective can be specified in the conf key under mcollective. Each config value con-
sists of a key value pair and will be written to /etc/mcollective/server.cfg. The public-cert and
private-cert keys, if present in conf may be used to specify the public and private certificates for mcollective.
Their values will be written to /etc/mcollective/ssl/server-public.pem and /etc/mcollective/
ssl/server-private.pem.
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Note: The ec2 metadata service is readable by non-root users. If security is a concern, use include-once and ssl urls.

Internal name: cc_mcollective

Module frequency: per instance

Supported distros: all

Config keys:

mcollective:
conf:

<key>: <value>
public-cert: |

-------BEGIN CERTIFICATE--------
<cert data>
-------END CERTIFICATE--------

private-cert: |
-------BEGIN CERTIFICATE--------
<cert data>
-------END CERTIFICATE--------

1.8.21 Migrator

Summary: migrate old versions of cloud-init data to new

This module handles moving old versions of cloud-init data to newer ones. Currently, it only handles renaming cloud-
init’s per-frequency semaphore files to canonicalized name and renaming legacy semaphore names to newer ones. This
module is enabled by default, but can be disabled by specifying migrate: false in config.

Internal name: cc_migrator

Module frequency: per always

Supported distros: all

Config keys:

migrate: <true/false>

1.8.22 Mounts

Summary: configure mount points and swap files

This module can add or remove mountpoints from /etc/fstab as well as configure swap. The mounts config key
takes a list of fstab entries to add. Each entry is specified as a list of [ fs_spec, fs_file, fs_vfstype,
fs_mntops, fs-freq, fs_passno ]. For more information on these options, consult the manual for /etc/
fstab. When specifying the fs_spec, if the device name starts with one of xvd, sd, hd, or vd, the leading /dev
may be omitted.

In order to remove a previously listed mount, an entry can be added to the mounts list containing fs_spec for the
device to be removed but no mountpoint (i.e. [ sda1 ] or [ sda1, null ]).

The mount_default_fields config key allows default options to be specified for the values in a mounts entry
that are not specified, aside from the fs_spec and the fs_file. If specified, this must be a list containing 6 values.
It defaults to:
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mount_default_fields: [none, none, "auto", "defaults,nobootwait", "0", "2"]

On a systemd booted system that default is the mostly equivalent:

mount_default_fields: [none, none, "auto",
"defaults,nofail,x-systemd.requires=cloud-init.service", "0", "2"]

Note that nobootwait is an upstart specific boot option that somewhat equates to the more standard nofail.

Swap files can be configured by setting the path to the swap file to create with filename, the size of the swap file
with size maximum size of the swap file if using an size: auto with maxsize. By default no swap file is
created.

Internal name: cc_mounts

Module frequency: per instance

Supported distros: all

Config keys:

mounts:
- [ /dev/ephemeral0, /mnt, auto, "defaults,noexec" ]
- [ sdc, /opt/data ]
- [ xvdh, /opt/data, "auto", "defaults,nofail", "0", "0" ]

mount_default_fields: [None, None, "auto", "defaults,nofail", "0", "2"]
swap:

filename: <file>
size: <"auto"/size in bytes>
maxsize: <size in bytes>

1.8.23 NTP

Summary: enable and configure ntp

Handle ntp configuration. If ntp is not installed on the system and ntp configuration is specified, ntp will be installed.
If there is a default ntp config file in the image or one is present in the distro’s ntp package, it will be copied to /
etc/ntp.conf.dist before any changes are made. A list of ntp pools and ntp servers can be provided under the
ntp config key. If no ntp servers or pools are provided, 4 pools will be used in the format {0-3}.{distro}.
pool.ntp.org.

Internal name: cc_ntp

Module frequency: once-per-instance

Supported distros: centos, debian, fedora, opensuse, rhel, sles, ubuntu

Config schema: ntp: (object/null)

pools: (array of string) List of ntp pools. If both pools and servers are empty, 4 default pool servers
will be provided of the format {0-3}.{distro}.pool.ntp.org.

servers: (array of string) List of ntp servers. If both pools and servers are empty, 4 default pool
servers will be provided with the format {0-3}.{distro}.pool.ntp.org.

ntp_client: (string) Name of an NTP client to use to configure system NTP. When unprovided or
‘auto’ the default client preferred by the distribution will be used. The following built-in client names
can be used to override existing configuration defaults: chrony, ntp, ntpdate, systemd-timesyncd.
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enabled: (boolean) Attempt to enable ntp clients if set to True. If set to False, ntp client will not be
configured or installed

config: (object) Configuration settings or overrides for the ntp_client specified.

confpath: (string) The path to where the ntp_client configuration is written.

check_exe: (string) The executable name for the ntp_client. For example, ntp service
check_exe is ‘ntpd’ because it runs the ntpd binary.

packages: (array of string) List of packages needed to be installed for the selected
ntp_client.

service_name: (string) The systemd or sysvinit service name used to start and stop the
ntp_client service.

template: (string) Inline template allowing users to define their own ntp_client config-
uration template. The value must start with ‘## template:jinja’ to enable use of templating
support.

Examples:

# Override ntp with chrony configuration on Ubuntu
ntp:

enabled: true
ntp_client: chrony # Uses cloud-init default chrony configuration

# --- Example2 ---
# Provide a custom ntp client configuration
ntp:

enabled: true
ntp_client: myntpclient
config:

confpath: /etc/myntpclient/myntpclient.conf
check_exe: myntpclientd
packages:

- myntpclient
service_name: myntpclient
template: |

## template:jinja
# My NTP Client config
{% if pools -%}# pools{% endif %}
{% for pool in pools -%}
pool {{pool}} iburst
{% endfor %}
{%- if servers %}# servers
{% endif %}
{% for server in servers -%}
server {{server}} iburst
{% endfor %}

pools: [0.int.pool.ntp.org, 1.int.pool.ntp.org, ntp.myorg.org]
servers:
- ntp.server.local
- ntp.ubuntu.com
- 192.168.23.2

1.8.24 Package Update Upgrade Install

Summary: update, upgrade, and install packages
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This module allows packages to be updated, upgraded or installed during boot. If any packages are to be installed or an
upgrade is to be performed then the package cache will be updated first. If a package installation or upgrade requires
a reboot, then a reboot can be performed if package_reboot_if_required is specified. A list of packages to
install can be provided. Each entry in the list can be either a package name or a list with two entries, the first being the
package name and the second being the specific package version to install.

Internal name: cc_package_update_upgrade_install

Module frequency: per instance

Supported distros: all

Config keys:

packages:
- pwgen
- pastebinit
- [libpython2.7, 2.7.3-0ubuntu3.1]

package_update: <true/false>
package_upgrade: <true/false>
package_reboot_if_required: <true/false>

apt_update: (alias for package_update)
apt_upgrade: (alias for package_upgrade)
apt_reboot_if_required: (alias for package_reboot_if_required)

1.8.25 Phone Home

Summary: post data to url

This module can be used to post data to a remote host after boot is complete. If the post url contains the string
$INSTANCE_ID it will be replaced with the id of the current instance. Either all data can be posted or a list of keys
to post. Available keys are:

• pub_key_dsa

• pub_key_rsa

• pub_key_ecdsa

• pub_key_ed25519

• instance_id

• hostname

• fdqn

Internal name: cc_phone_home

Module frequency: per instance

Supported distros: all

Config keys:

phone_home:
url: http://example.com/$INSTANCE_ID/
post:

- pub_key_dsa
- instance_id

(continues on next page)
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- fqdn
tries: 10

1.8.26 Power State Change

Summary: change power state

This module handles shutdown/reboot after all config modules have been run. By default it will take no action, and the
system will keep running unless a package installation/upgrade requires a system reboot (e.g. installing a new kernel)
and package_reboot_if_required is true. The power_state config key accepts a dict of options. If mode
is any value other than poweroff, halt, or reboot, then no action will be taken.

The system can be shutdown before cloud-init has finished using the timeout option. The delay key specifies a
duration to be added onto any shutdown command used. Therefore, if a 5 minute delay and a 120 second shutdown
are specified, the maximum amount of time between cloud-init starting and the system shutting down is 7 minutes,
and the minimum amount of time is 5 minutes. The delay key must have an argument in a form that the shutdown
utility recognizes. The most common format is the form +5 for 5 minutes. See man shutdown for more options.

Optionally, a command can be run to determine whether or not the system should shut down. The command to be run
should be specified in the condition key. For command formatting, see the documentation for cc_runcmd. The
specified shutdown behavior will only take place if the condition key is omitted or the command specified by the
condition key returns 0.

Internal name: cc_power_state_change

Module frequency: per instance

Supported distros: all

Config keys:

power_state:
delay: <now/'+minutes'>
mode: <poweroff/halt/reboot>
message: <shutdown message>
timeout: <seconds>
condition: <true/false/command>

1.8.27 Puppet

Summary: install, configure and start puppet

This module handles puppet installation and configuration. If the puppet key does not exist in global configuration,
no action will be taken. If a config entry for puppet is present, then by default the latest version of puppet will be
installed. If install is set to false, puppet will not be installed. However, this will result in an error if puppet
is not already present on the system. The version of puppet to be installed can be specified under version, and
defaults to none, which selects the latest version in the repos. If the puppet config key exists in the config archive,
this module will attempt to start puppet even if no installation was performed.

The module also provides keys for configuring the new puppet 4 paths and installing the puppet package
from the puppetlabs repositories: https://docs.puppet.com/puppet/4.2/reference/whered_it_go.html The keys are
package_name, conf_file, ssl_dir and csr_attributes_path. If unset, their values will default to
ones that work with puppet 3.x and with distributions that ship modified puppet 4.x that uses the old paths.

Puppet configuration can be specified under the conf key. The configuration is specified as a dictionary contain-
ing high-level <section> keys and lists of <key>=<value> pairs within each section. Each section name and
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<key>=<value> pair is written directly to puppet.conf. As such, section names should be one of: main,
master, agent or user and keys should be valid puppet configuration options. The certname key supports
string substitutions for %i and %f, corresponding to the instance id and fqdn of the machine respectively. If ca_cert
is present, it will not be written to puppet.conf, but instead will be used as the puppermaster certificate. It should
be specified in pem format as a multi-line string (using the | yaml notation).

Additionally it’s possible to create a csr_attributes.yaml for CSR attributes and certificate extension requests. See
https://puppet.com/docs/puppet/latest/config_file_csr_attributes.html

Internal name: cc_puppet

Module frequency: per instance

Supported distros: all

Config keys:

puppet:
install: <true/false>
version: <version>
conf_file: '/etc/puppet/puppet.conf'
ssl_dir: '/var/lib/puppet/ssl'
csr_attributes_path: '/etc/puppet/csr_attributes.yaml'
package_name: 'puppet'
conf:

agent:
server: "puppetmaster.example.org"
certname: "%i.%f"
ca_cert: |

-------BEGIN CERTIFICATE-------
<cert data>
-------END CERTIFICATE-------

csr_attributes:
custom_attributes:

1.2.840.113549.1.9.7: 342thbjkt82094y0uthhor289jnqthpc2290
extension_requests:

pp_uuid: ED803750-E3C7-44F5-BB08-41A04433FE2E
pp_image_name: my_ami_image
pp_preshared_key: 342thbjkt82094y0uthhor289jnqthpc2290

1.8.28 Resizefs

Summary: Resize filesystem

Resize a filesystem to use all avaliable space on partition. This module is useful along with cc_growpart and
will ensure that if the root partition has been resized the root filesystem will be resized along with it. By default,
cc_resizefs will resize the root partition and will block the boot process while the resize command is running.
Optionally, the resize operation can be performed in the background while cloud-init continues running modules.
This can be enabled by setting resize_rootfs to true. This module can be disabled altogether by setting
resize_rootfs to false.

Internal name: cc_resizefs

Module frequency: always

Supported distros: all

Config schema: resize_rootfs: (true/false/noblock) Whether to resize the root partition. Default: ‘true’

Examples:
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resize_rootfs: false # disable root filesystem resize operation

1.8.29 Resolv Conf

Summary: configure resolv.conf

This module is intended to manage resolv.conf in environments where early configuration of resolv.conf is necessary
for further bootstrapping and/or where configuration management such as puppet or chef own dns configuration. As
Debian/Ubuntu will, by default, utilize resovlconf, and similarly RedHat will use sysconfig, this module is likely to be
of little use unless those are configured correctly.

Note: For RedHat with sysconfig, be sure to set PEERDNS=no for all DHCP enabled NICs.

Note: And, in Ubuntu/Debian it is recommended that DNS be configured via the standard /etc/network/interfaces
configuration file.

Internal name: cc_resolv_conf

Module frequency: per instance

Supported distros: fedora, rhel, sles

Config keys:

manage_resolv_conf: <true/false>
resolv_conf:

nameservers: ['8.8.4.4', '8.8.8.8']
searchdomains:

- foo.example.com
- bar.example.com

domain: example.com
options:

rotate: <true/false>
timeout: 1

1.8.30 RedHat Subscription

Summary: register red hat enterprise linux based system

Register a RedHat system either by username and password or activation and org. Following a sucessful registra-
tion, you can auto-attach subscriptions, set the service level, add subscriptions based on pool id, enable/disable yum
repositories based on repo id, and alter the rhsm_baseurl and server-hostname in /etc/rhsm/rhs.conf. For more
details, see the Register RedHat Subscription example config.

Internal name: cc_rh_subscription

Module frequency: per instance

Supported distros: rhel, fedora

Config keys:
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rh_subscription:
username: <username>
password: <password>
activation-key: <activation key>
org: <org number>
auto-attach: <true/false>
service-level: <service level>
add-pool: <list of pool ids>
enable-repo: <list of yum repo ids>
disable-repo: <list of yum repo ids>
rhsm-baseurl: <url>
server-hostname: <hostname>

1.8.31 Rightscale Userdata

Summary: support rightscale configuration hooks

This module adds support for RightScale configuration hooks to cloud-init. RightScale adds a entry in the format
CLOUD_INIT_REMOTE_HOOK=http://... to ec2 user-data. This module checks for this line in the raw userdata
and retrieves any scripts linked by the RightScale user data and places them in the user scripts configuration directory,
to be run later by cc_scripts_user.

Note: the CLOUD_INIT_REMOTE_HOOK config variable is present in the raw ec2 user data only, not in any cloud-
config parts

Internal name: cc_rightscale_userdata

Module frequency: per instance

Supported distros: all

Config keys:

CLOUD_INIT_REMOTE_HOOK=<url>

1.8.32 Rsyslog

Summary: configure system loggig via rsyslog

This module configures remote system logging using rsyslog.

The rsyslog config file to write to can be specified in config_filename, which defaults to 20-cloud-config.
conf. The rsyslog config directory to write config files to may be specified in config_dir, which defaults to
/etc/rsyslog.d.

A list of configurations for rsyslog can be specified under the configs key in the rsyslog config. Each entry in
configs is either a string or a dictionary. Each config entry contains a configuration string and a file to write it to.
For config entries that are a dictionary, filename sets the target filename and content specifies the config string
to write. For config entries that are only a string, the string is used as the config string to write. If the filename to write
the config to is not specified, the value of the config_filename key is used. A file with the selected filename will
be written inside the directory specified by config_dir.

The command to use to reload the rsyslog service after the config has been updated can be specified in
service_reload_command. If this is set to auto, then an appropriate command for the distro will be used. This
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is the default behavior. To manually set the command, use a list of command args (e.g. [systemctl, restart,
rsyslog]).

Configuration for remote servers can be specified in configs, but for convenience it can be specified as key value
pairs in remotes. Each key is the name for an rsyslog remote entry. Each value holds the contents of the remote
config for rsyslog. The config consists of the following parts:

• filter for log messages (defaults to *.*)

• optional leading @ or @@, indicating udp and tcp respectively (defaults to @, for udp)

• ipv4 or ipv6 hostname or address. ipv6 addresses must be in [::1] format, (e.g. @[fd00::1]:514)

• optional port number (defaults to 514)

This module will provide sane defaults for any part of the remote entry that is not specified, so in most cases remote
hosts can be specified just using <name>: <address>.

For backwards compatibility, this module still supports legacy names for the config entries. Legacy to new mappings
are as follows:

• rsyslog -> rsyslog/configs

• rsyslog_filename -> rsyslog/config_filename

• rsyslog_dir -> rsyslog/config_dir

Note: The legacy config format does not support specifying service_reload_command.

Internal name: cc_rsyslog

Module frequency: per instance

Supported distros: all

Config keys:

rsyslog:
config_dir: config_dir
config_filename: config_filename
configs:

- "*.* @@192.158.1.1"
- content: "*.* @@192.0.2.1:10514"
filename: 01-example.conf

- content: |

*.* @@syslogd.example.com
remotes:

maas: "192.168.1.1"
juju: "10.0.4.1"

service_reload_command: [your, syslog, restart, command]

Legacy config keys:

rsyslog:
- "*.* @@192.158.1.1"

rsyslog_dir: /etc/rsyslog-config.d/
rsyslog_filename: 99-local.conf
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1.8.33 Runcmd

Summary: Run arbitrary commands

Run arbitrary commands at a rc.local like level with output to the console. Each item can be either a list or a string.
If the item is a list, it will be properly executed as if passed to execve() (with the first arg as the command). If the
item is a string, it will be written to a file and interpreted using sh.

Note: all commands must be proper yaml, so you have to quote any characters yaml would eat (‘:’ can be problematic)

Note: when writing files, do not use /tmp dir as it races with systemd-tmpfiles-clean LP: #1707222. Use /run/somedir
instead.

Internal name: cc_runcmd

Module frequency: once-per-instance

Supported distros: all

Config schema: runcmd: (array of (array of string)/(string))

Examples:

runcmd:
- [ ls, -l, / ]
- [ sh, -xc, "echo $(date) ': hello world!'" ]
- [ sh, -c, echo "=========hello world'=========" ]
- ls -l /root
- [ wget, "http://example.org", -O, /tmp/index.html ]

1.8.34 Salt Minion

Summary: set up and run salt minion

This module installs, configures and starts salt minion. If the salt_minion key is present in the config parts,
then salt minion will be installed and started. Configuration for salt minion can be specified in the conf key un-
der salt_minion. Any conf values present there will be assigned in /etc/salt/minion. The public and
private keys to use for salt minion can be specified with public_key and private_key respectively. Option-
ally if you have a custom package name, service name or config directory you can specify them with pkg_name,
service_name and config_dir.

Internal name: cc_salt_minion

Module frequency: per instance

Supported distros: all

Config keys:

salt_minion:
pkg_name: 'salt-minion'
service_name: 'salt-minion'
config_dir: '/etc/salt'
conf:

master: salt.example.com
grains:

(continues on next page)

76 Chapter 1. Getting help



cloud-init, Release 20.2

(continued from previous page)

role:
- web

public_key: |
------BEGIN PUBLIC KEY-------
<key data>
------END PUBLIC KEY-------

private_key: |
------BEGIN PRIVATE KEY------
<key data>
------END PRIVATE KEY-------

1.8.35 Scripts Per Boot

Summary: run per boot scripts

Any scripts in the scripts/per-boot directory on the datasource will be run every time the system boots. Scripts
will be run in alphabetical order. This module does not accept any config keys.

Internal name: cc_scripts_per_boot

Module frequency: per always

Supported distros: all

1.8.36 Scripts Per Instance

Summary: run per instance scripts

Any scripts in the scripts/per-instance directory on the datasource will be run when a new instance is first
booted. Scripts will be run in alphabetical order. This module does not accept any config keys.

Some cloud platforms change instance-id if a significant change was made to the system. As a result per-instance
scripts will run again.

Internal name: cc_scripts_per_instance

Module frequency: per instance

Supported distros: all

1.8.37 Scripts Per Once

Summary: run one time scripts

Any scripts in the scripts/per-once directory on the datasource will be run only once. Changes to the instance
will not force a re-run. The only way to re-run these scripts is to run the clean subcommand and reboot. Scripts will
be run in alphabetical order. This module does not accept any config keys.

Internal name: cc_scripts_per_once

Module frequency: per once

Supported distros: all
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1.8.38 Scripts User

Summary: run user scripts

This module runs all user scripts. User scripts are not specified in the scripts directory in the datasource, but rather
are present in the scripts dir in the instance configuration. Any cloud-config parts with a #! will be treated as a
script and run. Scripts specified as cloud-config parts will be run in the order they are specified in the configuration.
This module does not accept any config keys.

Internal name: cc_scripts_user

Module frequency: per instance

Supported distros: all

1.8.39 Scripts Vendor

Summary: run vendor scripts

Any scripts in the scripts/vendor directory in the datasource will be run when a new instance is first booted.
Scripts will be run in alphabetical order. Vendor scripts can be run with an optional prefix specified in the prefix
entry under the vendor_data config key.

Internal name: cc_scripts_vendor

Module frequency: per instance

Supported distros: all

Config keys:

vendor_data:
prefix: <vendor data prefix>

1.8.40 Seed Random

Summary: provide random seed data

Since all cloud instances started from the same image will produce very similar data when they are first booted, as they
are all starting with the same seed for the kernel’s entropy keyring. To avoid this, random seed data can be provided
to the instance either as a string or by specifying a command to run to generate the data.

Configuration for this module is under the random_seed config key. The file key specifies the path to write the
data to, defaulting to /dev/urandom. Data can be passed in directly with data, and may optionally be specified in
encoded form, with the encoding specified in encoding.

Note: when using a multiline value for data or specifying binary data, be sure to follow yaml syntax and use the |
and !binary yaml format specifiers when appropriate

Instead of specifying a data string, a command can be run to generate/collect the data to be written. The command
should be specified as a list of args in the command key. If a command is specified that cannot be run, no error will
be reported unless command_required is set to true.

For example, to use pollinate to gather data from a remote entropy server and write it to /dev/urandom, the
following could be used:
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random_seed:
file: /dev/urandom
command: ["pollinate", "--server=http://local.polinate.server"]
command_required: true

Internal name: cc_seed_random

Module frequency: per instance

Supported distros: all

Config keys:

random_seed:
file: <file>
data: <random string>
encoding: <raw/base64/b64/gzip/gz>
command: [<cmd name>, <arg1>, <arg2>...]
command_required: <true/false>

1.8.41 Set Hostname

Summary: set hostname and fqdn

This module handles setting the system hostname and fqdn. If preserve_hostname is set, then the hostname will
not be altered.

A hostname and fqdn can be provided by specifying a full domain name under the fqdn key. Alternatively, a hostname
can be specified using the hostname key, and the fqdn of the cloud wil be used. If a fqdn specified with the
hostname key, it will be handled properly, although it is better to use the fqdn config key. If both fqdn and
hostname are set, fqdn will be used.

This module will run in the init-local stage before networking is configured if the hostname is set by metadata or user
data on the local system.

This will occur on datasources like nocloud and ovf where metadata and user data are available locally. This ensures
that the desired hostname is applied before any DHCP requests are preformed on these platforms where dynamic DNS
is based on initial hostname.

Internal name: cc_set_hostname

Module frequency: per always

Supported distros: all

Config keys:

preserve_hostname: <true/false>
fqdn: <fqdn>
hostname: <fqdn/hostname>

1.8.42 Set Passwords

Summary: Set user passwords and enable/disable SSH password authentication

This module consumes three top-level config keys: ssh_pwauth, chpasswd and password.
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The ssh_pwauth config key determines whether or not sshd will be configured to accept password authentication.
True values will enable password auth, false values will disable password auth, and the literal string unchanged will
leave it unchanged. Setting no value will also leave the current setting on-disk unchanged.

The chpasswd config key accepts a dictionary containing either or both of expire and list.

If the list key is provided, it should contain a list of username:password pairs. This can be either a YAML
list (of strings), or a multi-line string with one pair per line. Each user will have the corresponding password set. A
password can be randomly generated by specifying RANDOM or R as a user’s password. A hashed password, created
by a tool like mkpasswd, can be specified; a regex (r'\$(1|2a|2y|5|6)(\$.+){2}') is used to determine if
a password value should be treated as a hash.

Note: The users specified must already exist on the system. Users will have been created by the cc_users_groups
module at this point.

By default, all users on the system will have their passwords expired (meaning that they will have to be reset the next
time the user logs in). To disable this behaviour, set expire under chpasswd to a false value.

If a list of user/password pairs is not specified under chpasswd, then the value of the password config key will
be used to set the default user’s password.

Internal name: cc_set_passwords

Module frequency: per instance

Supported distros: all

Config keys:

ssh_pwauth: <yes/no/unchanged>

password: password1
chpasswd:

expire: <true/false>

chpasswd:
list: |

user1:password1
user2:RANDOM
user3:password3
user4:R

##
# or as yaml list
##
chpasswd:

list:
- user1:password1
- user2:RANDOM
- user3:password3
- user4:R
- user4:$6$rL..$ej...

1.8.43 Snap

Summary: Install, configure and manage snapd and snap packages

This module provides a simple configuration namespace in cloud-init to both setup snapd and install snaps.
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Note: Both assertions and commands values can be either a dictionary or a list. If these configs are provided as
a dictionary, the keys are only used to order the execution of the assertions or commands and the dictionary is merged
with any vendor-data snap configuration provided. If a list is provided by the user instead of a dict, any vendor-data
snap configuration is ignored.

The assertions configuration option is a dictionary or list of properly-signed snap assertions which will
run before any snap commands. They will be added to snapd’s assertion database by invoking snap ack
<aggregate_assertion_file>.

Snap commands is a dictionary or list of individual snap commands to run on the target system. These commands
can be used to create snap users, install snaps and provide snap configuration.

Note: If ‘side-loading’ private/unpublished snaps on an instance, it is best to create a snap seed directory and
seed.yaml manifest in /var/lib/snapd/seed/ which snapd automatically installs on startup.

Development only: The squashfuse_in_container boolean can be set true to install squashfuse package when
in a container to enable snap installs. Default is false.

Internal name: cc_snap

Module frequency: once-per-instance

Supported distros: ubuntu

Config schema: snap: (object)

assertions: (object/array of string)

commands: (object/array of (array of string)/(string))

squashfuse_in_container: (boolean)

Examples:

snap:
assertions:

00: |
signed_assertion_blob_here
02: |
signed_assertion_blob_here

commands:
00: snap create-user --sudoer --known <snap-user>@mydomain.com
01: snap install canonical-livepatch
02: canonical-livepatch enable <AUTH_TOKEN>

# --- Example2 ---
# LXC-based containers require squashfuse before snaps can be installed
snap:

commands:
00: apt-get install squashfuse -y
11: snap install emoj

# --- Example3 ---
# Convenience: the snap command can be omitted when specifying commands
# as a list and 'snap' will automatically be prepended.
# The following commands are equivalent:

(continues on next page)
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snap:
commands:

00: ['install', 'vlc']
01: ['snap', 'install', 'vlc']
02: snap install vlc
03: 'snap install vlc'

1.8.44 Spacewalk

Summary: install and configure spacewalk

This module installs spacewalk and applies basic configuration. If the spacewalk config key is present spacewalk
will be installed. The server to connect to after installation must be provided in the server in spacewalk configura-
tion. A proxy to connect through and a activation key may optionally be specified.

For more information about spacewalk see: https://fedorahosted.org/spacewalk/

Internal name: cc_spacewalk

Module frequency: per instance

Supported distros: redhat, fedora

Config keys:

spacewalk:
server: <url>
proxy: <proxy host>
activation_key: <key>

1.8.45 SSH

Summary: configure SSH and SSH keys (host and authorized)

This module handles most configuration for SSH and both host and authorized SSH keys.

Authorized Keys

Authorized keys are a list of public SSH keys that are allowed to connect to a a user account on a system. They are
stored in .ssh/authorized_keys in that account’s home directory. Authorized keys for the default user defined in users
can be specified using ssh_authorized_keys. Keys should be specified as a list of public keys.

Note: see the cc_set_passwords module documentation to enable/disable SSH password authentication

Root login can be enabled/disabled using the disable_root config key. Root login options can be manually
specified with disable_root_opts. If disable_root_opts is specified and contains the string $USER, it
will be replaced with the username of the default user. By default, root login is disabled, and root login opts are set to:

no-port-forwarding,no-agent-forwarding,no-X11-forwarding
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Host Keys

Host keys are for authenticating a specific instance. Many images have default host SSH keys, which can be removed
using ssh_deletekeys. This prevents re-use of a private host key from an image on multiple machines. Since
removing default host keys is usually the desired behavior this option is enabled by default.

Host keys can be added using the ssh_keys configuration key. The argument to this config key should be a dictionary
entries for the public and private keys of each desired key type. Entries in the ssh_keys config dict should have
keys in the format <key type>_private and <key type>_public, e.g. rsa_private: <key> and
rsa_public: <key>. See below for supported key types. Not all key types have to be specified, ones left
unspecified will not be used. If this config option is used, then no keys will be generated.

Note: when specifying private host keys in cloud-config, care should be taken to ensure that the communication
between the data source and the instance is secure

Note: to specify multiline private host keys, use yaml multiline syntax

If no host keys are specified using ssh_keys, then keys will be generated using ssh-keygen. By default one
public/private pair of each supported host key type will be generated. The key types to generate can be specified using
the ssh_genkeytypes config flag, which accepts a list of host key types to use. For each host key type for which
this module has been instructed to create a keypair, if a key of the same type is already present on the system (i.e. if
ssh_deletekeys was false), no key will be generated.

Supported host key types for the ssh_keys and the ssh_genkeytypes config flags are:

• rsa

• dsa

• ecdsa

• ed25519

Internal name: cc_ssh

Module frequency: per instance

Supported distros: all

Config keys:

ssh_deletekeys: <true/false>
ssh_keys:

rsa_private: |
-----BEGIN RSA PRIVATE KEY-----
MIIBxwIBAAJhAKD0YSHy73nUgysO13XsJmd4fHiFyQ+00R7VVu2iV9Qco
...
-----END RSA PRIVATE KEY-----

rsa_public: ssh-rsa AAAAB3NzaC1yc2EAAAABIwAAAGEAoPRhIfLvedSDKw7Xd ...
dsa_private: |

-----BEGIN DSA PRIVATE KEY-----
MIIBxwIBAAJhAKD0YSHy73nUgysO13XsJmd4fHiFyQ+00R7VVu2iV9Qco
...
-----END DSA PRIVATE KEY-----

dsa_public: ssh-dsa AAAAB3NzaC1yc2EAAAABIwAAAGEAoPRhIfLvedSDKw7Xd ...
ssh_genkeytypes: <key type>
disable_root: <true/false>

(continues on next page)
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disable_root_opts: <disable root options string>
ssh_authorized_keys:

- ssh-rsa AAAAB3NzaC1yc2EAAAABIwAAAGEA3FSyQwBI6Z+nCSjUU ...
- ssh-rsa AAAAB3NzaC1yc2EAAAABIwAAAQEA3I7VUf2l5gSn5uavROsc5HRDpZ ...

allow_public_ssh_keys: <true/false>
ssh_publish_hostkeys:

enabled: <true/false> (Defaults to true)
blacklist: <list of key types> (Defaults to [dsa])

1.8.46 SSH Authkey Fingerprints

Summary: log fingerprints of user SSH keys

Write fingerprints of authorized keys for each user to log. This is enabled by default, but can be disabled using
no_ssh_fingerprints. The hash type for the keys can be specified, but defaults to sha256.

Internal name: ‘‘ cc_ssh_authkey_fingerprints‘‘

Module frequency: per instance

Supported distros: all

Config keys:

no_ssh_fingerprints: <true/false>
authkey_hash: <hash type>

1.8.47 SSH Import Id

Summary: import SSH id

This module imports SSH keys from either a public keyserver, usually launchpad or github using ssh-import-id.
Keys are referenced by the username they are associated with on the keyserver. The keyserver can be specified by
prepending either lp: for launchpad or gh: for github to the username.

Internal name: cc_ssh_import_id

Module frequency: per instance

Supported distros: ubuntu, debian

Config keys:

ssh_import_id:
- user
- gh:user
- lp:user

1.8.48 Timezone

Summary: set system timezone

Set the system timezone. If any args are passed to the module then the first will be used for the timezone. Otherwise,
the module will attempt to retrieve the timezone from cloud config.

Internal name: cc_timezone
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Module frequency: per instance

Supported distros: all

Config keys:

timezone: <timezone>

1.8.49 Ubuntu Advantage

Summary: Configure Ubuntu Advantage support services

Attach machine to an existing Ubuntu Advantage support contract and enable or disable support services such as
Livepatch, ESM, FIPS and FIPS Updates. When attaching a machine to Ubuntu Advantage, one can also specify
services to enable. When the ‘enable’ list is present, any named service will be enabled and all absent services will
remain disabled.

Note that when enabling FIPS or FIPS updates you will need to schedule a reboot to ensure the machine is running
the FIPS-compliant kernel. See Power State Change for information on how to configure cloud-init to perform this
reboot.

Internal name: cc_ubuntu_advantage

Module frequency: once-per-instance

Supported distros: ubuntu

Config schema: ubuntu_advantage: (object)

enable: (array of string)

token: (string) A contract token obtained from https://ubuntu.com/advantage.

Examples:

# Attach the machine to an Ubuntu Advantage support contract with a
# UA contract token obtained from https://ubuntu.com/advantage.
ubuntu_advantage:
token: <ua_contract_token>

# --- Example2 ---
# Attach the machine to an Ubuntu Advantage support contract enabling
# only fips and esm services. Services will only be enabled if
# the environment supports said service. Otherwise warnings will
# be logged for incompatible services specified.
ubuntu-advantage:
token: <ua_contract_token>
enable:
- fips
- esm

# --- Example3 ---
# Attach the machine to an Ubuntu Advantage support contract and enable
# the FIPS service. Perform a reboot once cloud-init has
# completed.
power_state:

mode: reboot
ubuntu-advantage:

token: <ua_contract_token>

(continues on next page)

1.8. Modules 85

https://ubuntu.com/advantage


cloud-init, Release 20.2

(continued from previous page)

enable:
- fips

1.8.50 Ubuntu Drivers

Summary: Interact with third party drivers in Ubuntu.

This module interacts with the ‘ubuntu-drivers’ command to install third party driver packages.

Internal name: cc_ubuntu_drivers

Module frequency: once-per-instance

Supported distros: ubuntu

Config schema: drivers: (object)

nvidia: (object)

license-accepted: (boolean) Do you accept the NVIDIA driver license?

version: (string) The version of the driver to install (e.g. “390”, “410”). Defaults to the
latest version.

Examples:

drivers:
nvidia:
license-accepted: true

1.8.51 Update Etc Hosts

Summary: update /etc/hosts

This module will update the contents of /etc/hosts based on the hostname/fqdn specified in config. Management
of /etc/hosts is controlled using manage_etc_hosts. If this is set to false, cloud-init will not manage /etc/
hosts at all. This is the default behavior.

If set to true or template, cloud-init will generate /etc/hosts using the template located in /etc/
cloud/templates/hosts.tmpl. In the /etc/cloud/templates/hosts.tmpl template, the strings
$hostname and $fqdn will be replaced with the hostname and fqdn respectively.

If manage_etc_hosts is set to localhost, then cloud-init will not rewrite /etc/hosts entirely, but rather
will ensure that a entry for the fqdn with a distribution dependent ip is present in /etc/hosts (i.e. ping
<hostname> will ping 127.0.0.1 or 127.0.1.1 or other ip).

Note: if manage_etc_hosts is set true or template, the contents of /etc/hosts will be updated every
boot. to make any changes to /etc/hosts persistant they must be made in /etc/cloud/templates/hosts.
tmpl

Note: for instructions on specifying hostname and fqdn, see documentation for cc_set_hostname

Internal name: cc_update_etc_hosts

Module frequency: per always
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Supported distros: all

Config keys:

manage_etc_hosts: <true/"template"/false/"localhost">
fqdn: <fqdn>
hostname: <fqdn/hostname>

1.8.52 Update Hostname

Summary: update hostname and fqdn

This module will update the system hostname and fqdn. If preserve_hostname is set, then the hostname will not
be altered.

Note: for instructions on specifying hostname and fqdn, see documentation for cc_set_hostname

Internal name: cc_update_hostname

Module frequency: per always

Supported distros: all

Config keys:

preserve_hostname: <true/false>
fqdn: <fqdn>
hostname: <fqdn/hostname>

1.8.53 Users and Groups

Summary: configure users and groups

This module configures users and groups. For more detailed information on user options, see the Including
users and groups config example.

Groups to add to the system can be specified as a list under the groups key. Each entry in the list should either
contain a the group name as a string, or a dictionary with the group name as the key and a list of users who should be
members of the group as the value. Note: Groups are added before users, so any users in a group list must already
exist on the system.

The users config key takes a list of users to configure. The first entry in this list is used as the default user for the
system. To preserve the standard default user for the distro, the string default may be used as the first entry of the
users list. Each entry in the users list, other than a default entry, should be a dictionary of options for the user.
Supported config keys for an entry in users are as follows:

• name: The user’s login name

• expiredate: Optional. Date on which the user’s login will be disabled. Default: none

• gecos: Optional. Comment about the user, usually a comma-separated string of real name and contact infor-
mation. Default: none

• groups: Optional. Additional groups to add the user to. Default: none

• homedir: Optional. Home dir for user. Default is /home/<username>

• inactive: Optional. Mark user inactive. Default: false
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• lock_passwd: Optional. Disable password login. Default: true

• no_create_home: Optional. Do not create home directory. Default: false

• no_log_init: Optional. Do not initialize lastlog and faillog for user. Default: false

• no_user_group: Optional. Do not create group named after user. Default: false

• passwd: Hash of user password

• primary_group: Optional. Primary group for user. Default to new group named after user.

• selinux_user: Optional. SELinux user for user’s login. Default to default SELinux user.

• shell: Optional. The user’s login shell. The default is to set no shell, which results in a system-specific default
being used.

• snapuser: Optional. Specify an email address to create the user as a Snappy user through snap
create-user. If an Ubuntu SSO account is associated with the address, username and SSH keys will be
requested from there. Default: none

• ssh_authorized_keys: Optional. List of SSH keys to add to user’s authkeys file. Default: none. This key
can not be combined with ssh_redirect_user.

• ssh_import_id: Optional. SSH id to import for user. Default: none. This key can not be combined with
ssh_redirect_user.

• ssh_redirect_user: Optional. Boolean set to true to disable SSH logins for this user. When specified,
all cloud meta-data public SSH keys will be set up in a disabled state for this username. Any SSH login as this
username will timeout and prompt with a message to login instead as the configured <default_username> for this
instance. Default: false. This key can not be combined with ssh_import_id or ssh_authorized_keys.

• sudo: Optional. Sudo rule to use, list of sudo rules to use or False. Default: none. An absence of sudo key, or
a value of none or false will result in no sudo rules being written for the user.

• system: Optional. Create user as system user with no home directory. Default: false

• uid: Optional. The user’s ID. Default: The next available value.

Note: Specifying a hash of a user’s password with passwd is a security risk if the cloud-config can be intercepted.
SSH authentication is preferred.

Note: If specifying a sudo rule for a user, ensure that the syntax for the rule is valid, as it is not checked by cloud-init.

Internal name: cc_users_groups

Module frequency: per instance

Supported distros: all

Config keys:

groups:
- <group>: [<user>, <user>]
- <group>

users:
- default
# User explicitly omitted from sudo permission; also default behavior.
- name: <some_restricted_user>

(continues on next page)
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sudo: false
- name: <username>

expiredate: <date>
gecos: <comment>
groups: <additional groups>
homedir: <home directory>
inactive: <true/false>
lock_passwd: <true/false>
no_create_home: <true/false>
no_log_init: <true/false>
no_user_group: <true/false>
passwd: <password>
primary_group: <primary group>
selinux_user: <selinux username>
shell: <shell path>
snapuser: <email>
ssh_redirect_user: <true/false>
ssh_authorized_keys:

- <key>
- <key>

ssh_import_id: <id>
sudo: <sudo config>
system: <true/false>
uid: <user id>

1.8.54 Write Files

Summary: write arbitrary files

Write out arbitrary content to files, optionally setting permissions. Parent folders in the path are created
if absent. Content can be specified in plain text or binary. Data encoded with either base64 or binary gzip
data can be specified and will be decoded before being written. For empty file creation, content can be
omitted.

Note: if multiline data is provided, care should be taken to ensure that it follows yaml formatting standards. to specify
binary data, use the yaml option !!binary

Note: Do not write files under /tmp during boot because of a race with systemd-tmpfiles-clean that can cause temp
files to get cleaned during the early boot process. Use /run/somedir instead to avoid race LP:1707222.

Internal name: cc_write_files

Module frequency: once-per-instance

Supported distros: all

Config schema: write_files: (array of object)

Each item in write_files list supports the following keys:

path: (string) Path of the file to which content is decoded and written

content: (string) Optional content to write to the provided path. When content is present
and encoding is not ‘text/plain’, decode the content prior to writing. Default: ‘’
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owner: (string) Optional owner:group to chown on the file. Default: root:root

permissions: (string) Optional file permissions to set on path represented as an octal
string ‘0###’. Default: ‘0644’

encoding: (string) Optional encoding type of the content. Default is text/plain and no
content decoding is performed. Supported encoding types are: gz, gzip, gz+base64,
gzip+base64, gz+b64, gzip+b64, b64, base64.

append: (boolean) Whether to append content to existing file if path exists. Default:
false.

Examples:

# Write out base64 encoded content to /etc/sysconfig/selinux
write_files:
- encoding: b64

content: CiMgVGhpcyBmaWxlIGNvbnRyb2xzIHRoZSBzdGF0ZSBvZiBTRUxpbnV4...
owner: root:root
path: /etc/sysconfig/selinux
permissions: '0644'

# --- Example2 ---
# Appending content to an existing file
write_files:
- content: |

15 * * * * root ship_logs
path: /etc/crontab
append: true

# --- Example3 ---
# Provide gziped binary content
write_files:
- encoding: gzip

content: !!binary |
H4sIAIDb/U8C/1NW1E/KzNMvzuBKTc7IV8hIzcnJVyjPL8pJ4QIA6N+MVxsAAAA=

path: /usr/bin/hello
permissions: '0755'

# --- Example4 ---
# Create an empty file on the system
write_files:
- path: /root/CLOUD_INIT_WAS_HERE

1.8.55 Yum Add Repo

Summary: add yum repository configuration to the system

Add yum repository configuration to /etc/yum.repos.d. Configuration files are named based on the dictionary
key under the yum_repos they are specified with. If a config file already exists with the same name as a config entry,
the config entry will be skipped.

Internal name: cc_yum_add_repo

Module frequency: per always

Supported distros: fedora, rhel

Config keys:
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yum_repos:
<repo-name>:

baseurl: <repo url>
name: <repo name>
enabled: <true/false>
# any repository configuration options (see man yum.conf)

1.9 Merging User-Data Sections

1.9.1 Overview

This was implemented because it has been a common feature request that there be a way to specify how cloud-config
yaml “dictionaries” provided as user-data are merged together when there are multiple yaml files to merge together
(say when performing an #include).

Since previously the merging algorithm was very simple and would only overwrite and not append lists, or strings, and
so on it was decided to create a new and improved way to merge dictionaries (and their contained objects) together in
a way that is customizable, thus allowing for users who provide cloud-config user-data to determine exactly how their
objects will be merged.

For example.

#cloud-config (1)
runcmd:

- bash1
- bash2

#cloud-config (2)
runcmd:

- bash3
- bash4

The previous way of merging the two objects above would result in a final cloud-config object that contains the
following.

#cloud-config (merged)
runcmd:

- bash3
- bash4

Typically this is not what users want; instead they would likely prefer:

#cloud-config (merged)
runcmd:

- bash1
- bash2
- bash3
- bash4

This way makes it easier to combine the various cloud-config objects you have into a more useful list, thus reducing
duplication necessary to accomplish the same result with the previous method.
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1.9.2 Built-in Mergers

Cloud-init provides merging for the following built-in types:

• Dict

• List

• String

The Dict merger has the following options which control what is done with values contained within the config.

• allow_delete: Existing values not present in the new value can be deleted, defaults to False

• no_replace: Do not replace an existing value if one is already present, enabled by default.

• replace: Overwrite existing values with new ones.

The List merger has the following options which control what is done with the values contained within the config.

• append: Add new value to the end of the list, defaults to False.

• prepend: Add new values to the start of the list, defaults to False.

• no_replace: Do not replace an existing value if one is already present, enabled by default.

• replace: Overwrite existing values with new ones.

The Str merger has the following options which control what is done with the values contained within the config.

• append: Add new value to the end of the string, defaults to False.

Common options for all merge types which control how recursive merging is done on other types.

• recurse_dict: If True merge the new values of the dictionary, defaults to True.

• recurse_list: If True merge the new values of the list, defaults to False.

• recurse_array: Alias for recurse_list.

• recurse_str: If True merge the new values of the string, defaults to False.

1.9.3 Customizability

Because the above merging algorithm may not always be desired (just as the previous merging algorithm was not
always the preferred one), the concept of customized merging was introduced through ‘merge classes’.

A merge class is a class definition which provides functions that can be used to merge a given type with another given
type.

An example of one of these merging classes is the following:

class Merger(object):
def __init__(self, merger, opts):

self._merger = merger
self._overwrite = 'overwrite' in opts

# This merging algorithm will attempt to merge with
# another dictionary, on encountering any other type of object
# it will not merge with said object, but will instead return
# the original value
#
# On encountering a dictionary, it will create a new dictionary
# composed of the original and the one to merge with, if 'overwrite'

(continues on next page)
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# is enabled then keys that exist in the original will be overwritten
# by keys in the one to merge with (and associated values). Otherwise
# if not in overwrite mode the 2 conflicting keys themselves will
# be merged.
def _on_dict(self, value, merge_with):

if not isinstance(merge_with, (dict)):
return value

merged = dict(value)
for (k, v) in merge_with.items():

if k in merged:
if not self._overwrite:

merged[k] = self._merger.merge(merged[k], v)
else:

merged[k] = v
else:

merged[k] = v
return merged

As you can see there is a ‘_on_dict’ method here that will be given a source value and a value to merge with. The result
will be the merged object. This code itself is called by another merging class which ‘directs’ the merging to happen
by analyzing the types of the objects to merge and attempting to find a know object that will merge that type. I will
avoid pasting that here, but it can be found in the mergers/__init__.py file (see LookupMerger and UnknownMerger).

So following the typical cloud-init way of allowing source code to be downloaded and used dynamically, it is possible
for users to inject there own merging files to handle specific types of merging as they choose (the basic ones included
will handle lists, dicts, and strings). Note how each merge can have options associated with it which affect how the
merging is performed, for example a dictionary merger can be told to overwrite instead of attempt to merge, or a string
merger can be told to append strings instead of discarding other strings to merge with.

1.9.4 How to activate

There are a few ways to activate the merging algorithms, and to customize them for your own usage.

1. The first way involves the usage of MIME messages in cloud-init to specify multipart documents (this is one
way in which multiple cloud-config is joined together into a single cloud-config). Two new headers are looked
for, both of which can define the way merging is done (the first header to exist wins). These new headers (in
lookup order) are ‘Merge-Type’ and ‘X-Merge-Type’. The value should be a string which will satisfy the new
merging format definition (see below for this format).

2. The second way is actually specifying the merge-type in the body of the cloud-config dictionary. There are 2
ways to specify this, either as a string or as a dictionary (see format below). The keys that are looked up for this
definition are the following (in order), ‘merge_how’, ‘merge_type’.

String format

The string format that is expected is the following.

classname1(option1,option2)+classname2(option3,option4)....

The class name there will be connected to class names used when looking for the class that can be used to merge and
options provided will be given to the class on construction of that class.

For example, the default string that is used when none is provided is the following:
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list()+dict()+str()

Dictionary format

A dictionary can be used when it specifies the same information as the string format (i.e. the second option above),
for example:

{'merge_how': [{'name': 'list', 'settings': ['append']},
{'name': 'dict', 'settings': ['no_replace', 'recurse_list']},
{'name': 'str', 'settings': ['append']}]}

This would be the equivalent format for default string format but in dictionary form instead of string form.

1.9.5 Specifying multiple types and its effect

Now you may be asking yourself, if I specify a merge-type header or dictionary for every cloud-config that I provide,
what exactly happens?

The answer is that when merging, a stack of ‘merging classes’ is kept, the first one on that stack is the default merging
classes, this set of mergers will be used when the first cloud-config is merged with the initial empty cloud-config
dictionary. If the cloud-config that was just merged provided a set of merging classes (via the above formats) then
those merging classes will be pushed onto the stack. Now if there is a second cloud-config to be merged then the
merging classes from the cloud-config before the first will be used (not the default) and so on. This way a cloud-config
can decide how it will merge with a cloud-config dictionary coming after it.

1.9.6 Other uses

In addition to being used for merging user-data sections, the default merging algorithm for merging ‘conf.d’ yaml files
(which form an initial yaml config for cloud-init) was also changed to use this mechanism so its full benefits (and
customization) can also be used there as well. Other places that used the previous merging are also, similarly, now
extensible (metadata merging, for example).

Note, however, that merge algorithms are not used across types of configuration. As was the case before merging was
implemented, user-data will overwrite conf.d configuration without merging.

1.9.7 Example cloud-config

A common request is to include multiple runcmd directives in different files and merge all of the commands together.
To achieve this, we must modify the default merging to allow for dictionaries to join list values.

The first config

#cloud-config
merge_how:
- name: list
settings: [append]

- name: dict
settings: [no_replace, recurse_list]

runcmd:
- bash1
- bash2
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The second config

#cloud-config
merge_how:
- name: list
settings: [append]

- name: dict
settings: [no_replace, recurse_list]

runcmd:
- bash3
- bash4

1.10 Instance Metadata

1.10.1 What is instance data?

Instance data is the collection of all configuration data that cloud-init processes to configure the instance. This config-
uration typically comes from any number of sources:

• cloud-provided metadata services (aka metadata)

• custom config-drive attached to the instance

• cloud-config seed files in the booted cloud image or distribution

• vendordata provided from files or cloud metadata services

• userdata provided at instance creation

Each cloud provider presents unique configuration metadata in different formats to the instance. Cloud-init provides a
cache of any crawled metadata as well as a versioned set of standardized instance data keys which it makes available
on all platforms.

Cloud-init produces a simple json object in /run/cloud-init/instance-data.json which represents stan-
dardized and versioned representation of the metadata it consumes during initial boot. The intent is to provide the
following benefits to users or scripts on any system deployed with cloud-init:

• simple static object to query to obtain a instance’s metadata

• speed: avoid costly network transactions for metadata that is already cached on the filesytem

• reduce need to recrawl metadata services for static metadata that is already cached

• leverage cloud-init’s best practices for crawling cloud-metadata services

• avoid rolling unique metadata crawlers on each cloud platform to get metadata configuration values

Cloud-init stores any instance data processed in the following files:

• /run/cloud-init/instance-data.json: world-readable json containing standardized keys, sensitive
keys redacted

• /run/cloud-init/instance-data-sensitive.json: root-readable unredacted json blob

• /var/lib/cloud/instance/user-data.txt: root-readable sensitive raw userdata

• /var/lib/cloud/instance/vendor-data.txt: root-readable sensitive raw vendordata
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Cloud-init redacts any security sensitive content from instance-data.json, stores /run/cloud-init/
instance-data.json as a world-readable json file. Because user-data and vendor-data can contain pass-
words both of these files are readonly for root as well. The root user can also read /run/cloud-init/
instance-data-sensitive.json which is all instance data from instance-data.json as well as unredacted
sensitive content.

1.10.2 Format of instance-data.json

The instance-data.json and instance-data-sensitive.json files are well-formed JSON and record the set of keys and
values for any metadata processed by cloud-init. Cloud-init standardizes the format for this content so that it can be
generalized across different cloud platforms.

There are three basic top-level keys:

• base64_encoded_keys: A list of forward-slash delimited key paths into the instance-data.json object whose
value is base64encoded for json compatibility. Values at these paths should be decoded to get the original value.

• sensitive_keys: A list of forward-slash delimited key paths into the instance-data.json object whose value is
considered by the datasource as ‘security sensitive’. Only the keys listed here will be redacted from instance-
data.json for non-root users.

• merged_cfg: Merged cloud-init ‘system_config’ from /etc/cloud/cloud.cfg and /etc/cloud/cloud-cfg.d. Values
under this key could contain sensitive information such as passwords, so it is included in the sensitive-keys list
which is only readable by root.

• ds: Datasource-specific metadata crawled for the specific cloud platform. It should closely represent the struc-
ture of the cloud metadata crawled. The structure of content and details provided are entirely cloud-dependent.
Mileage will vary depending on what the cloud exposes. The content exposed under the ‘ds’ key is currently
experimental and expected to change slightly in the upcoming cloud-init release.

• sys_info: Information about the underlying os, python, architecture and kernel. This represents the data col-
lected by cloudinit.util.system_info.

• v1: Standardized cloud-init metadata keys, these keys are guaranteed to exist on all cloud platforms. They will
also retain their current behavior and format and will be carried forward even if cloud-init introduces a new
version of standardized keys with v2.

The standardized keys present:

v1._beta_keys

List of standardized keys still in ‘beta’. The format, intent or presence of these keys can change. Do not consider them
production-ready.

Example output:

• [subplatform]

v1.cloud_name

Where possible this will indicate the ‘name’ of the cloud the system is running on. This is different than the ‘platform’
item. For example, the cloud name of Amazon Web Services is ‘aws’, while the platform is ‘ec2’.

If determining a specific name is not possible or provided in meta-data, then this filed may contain the same content
as ‘platform’.

Example output:
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• aws

• openstack

• azure

• configdrive

• nocloud

• ovf

v1.distro, v1.distro_version, v1.distro_release

This shall be the distro name, version and release as determined by cloudinit.util.get_linux_distro.

Example output:

• centos, 7.5, core

• debian, 9, stretch

• freebsd, 12.0-release-p10,

• opensuse, 42.3, x86_64

• opensuse-tumbleweed, 20180920, x86_64

• redhat, 7.5, ‘maipo’

• sles, 12.3, x86_64

• ubuntu, 20.04, focal

v1.instance_id

Unique instance_id allocated by the cloud.

Examples output:

• i-<hash>

v1.kernel_release

This shall be the running kernel uname -r

Example output:

• 5.3.0-1010-aws

v1.local_hostname

The internal or local hostname of the system.

Examples output:

• ip-10-41-41-70

• <user-provided-hostname>

1.10. Instance Metadata 97



cloud-init, Release 20.2

v1.machine

This shall be the running cpu machine architecture uname -m

Example output:

• x86_64

• i686

• ppc64le

• s390x

v1.platform

An attempt to identify the cloud platfrom instance that the system is running on.

Examples output:

• ec2

• openstack

• lxd

• gce

• nocloud

• ovf

v1.subplatform

Additional platform details describing the specific source or type of metadata used. The format of subplatform will
be:

<subplatform_type> (<url_file_or_dev_path>)

Examples output:

• metadata (http://168.254.169.254)

• seed-dir (/path/to/seed-dir/)

• config-disk (/dev/cd0)

• configdrive (/dev/sr0)

v1.public_ssh_keys

A list of SSH keys provided to the instance by the datasource metadata.

Examples output:

• [‘ssh-rsa AA. . . ’, . . . ]

98 Chapter 1. Getting help

http://168.254.169.254


cloud-init, Release 20.2

v1.python_version

The version of python that is running cloud-init as determined by cloudinit.util.system_info

Example output:

• 3.7.6

v1.region

The physical region/data center in which the instance is deployed.

Examples output:

• us-east-2

v1.availability_zone

The physical availability zone in which the instance is deployed.

Examples output:

• us-east-2b

• nova

• null

Example Output

Below is an example of /run/cloud-init/instance-data-sensitive.json on an EC2 instance:

{
"_beta_keys": [
"subplatform"

],
"availability_zone": "us-east-1b",
"base64_encoded_keys": [],
"merged_cfg": {
"_doc": "Merged cloud-init system config from /etc/cloud/cloud.cfg and /etc/cloud/

→˓cloud.cfg.d/",
"_log": [
"[loggers]\nkeys=root,cloudinit\n\n[handlers]\nkeys=consoleHandler,

→˓cloudLogHandler\n\n[formatters]\nkeys=simpleFormatter,arg0Formatter\n\n[logger_
→˓root]\nlevel=DEBUG\nhandlers=consoleHandler,cloudLogHandler\n\n[logger_
→˓cloudinit]\nlevel=DEBUG\nqualname=cloudinit\nhandlers=\npropagate=1\n\n[handler_
→˓consoleHandler]\nclass=StreamHandler\nlevel=WARNING\nformatter=arg0Formatter\nargs=(sys.
→˓stderr,)\n\n[formatter_arg0Formatter]\nformat=%(asctime)s - %(filename)s[
→˓%(levelname)s]: %(message)s\n\n[formatter_simpleFormatter]\nformat=[CLOUDINIT]
→˓%(filename)s[%(levelname)s]: %(message)s\n",

"[handler_
→˓cloudLogHandler]\nclass=FileHandler\nlevel=DEBUG\nformatter=arg0Formatter\nargs=('/
→˓var/log/cloud-init.log',)\n",

"[handler_cloudLogHandler]\nclass=handlers.
→˓SysLogHandler\nlevel=DEBUG\nformatter=simpleFormatter\nargs=(\"/dev/log\", handlers.
→˓SysLogHandler.LOG_USER)\n"
],

(continues on next page)
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"cloud_config_modules": [
"emit_upstart",
"snap",
"ssh-import-id",
"locale",
"set-passwords",
"grub-dpkg",
"apt-pipelining",
"apt-configure",
"ubuntu-advantage",
"ntp",
"timezone",
"disable-ec2-metadata",
"runcmd",
"byobu"
],
"cloud_final_modules": [
"package-update-upgrade-install",
"fan",
"landscape",
"lxd",
"ubuntu-drivers",
"puppet",
"chef",
"mcollective",
"salt-minion",
"rightscale_userdata",
"scripts-vendor",
"scripts-per-once",
"scripts-per-boot",
"scripts-per-instance",
"scripts-user",
"ssh-authkey-fingerprints",
"keys-to-console",
"phone-home",
"final-message",
"power-state-change"
],
"cloud_init_modules": [
"migrator",
"seed_random",
"bootcmd",
"write-files",
"growpart",
"resizefs",
"disk_setup",
"mounts",
"set_hostname",
"update_hostname",
"update_etc_hosts",
"ca-certs",
"rsyslog",
"users-groups",
"ssh"
],
"datasource_list": [
"Ec2",

(continues on next page)

100 Chapter 1. Getting help



cloud-init, Release 20.2

(continued from previous page)

"None"
],
"def_log_file": "/var/log/cloud-init.log",
"disable_root": true,
"log_cfgs": [
[
"[loggers]\nkeys=root,cloudinit\n\n[handlers]\nkeys=consoleHandler,

→˓cloudLogHandler\n\n[formatters]\nkeys=simpleFormatter,arg0Formatter\n\n[logger_
→˓root]\nlevel=DEBUG\nhandlers=consoleHandler,cloudLogHandler\n\n[logger_
→˓cloudinit]\nlevel=DEBUG\nqualname=cloudinit\nhandlers=\npropagate=1\n\n[handler_
→˓consoleHandler]\nclass=StreamHandler\nlevel=WARNING\nformatter=arg0Formatter\nargs=(sys.
→˓stderr,)\n\n[formatter_arg0Formatter]\nformat=%(asctime)s - %(filename)s[
→˓%(levelname)s]: %(message)s\n\n[formatter_simpleFormatter]\nformat=[CLOUDINIT]
→˓%(filename)s[%(levelname)s]: %(message)s\n",

"[handler_
→˓cloudLogHandler]\nclass=FileHandler\nlevel=DEBUG\nformatter=arg0Formatter\nargs=('/
→˓var/log/cloud-init.log',)\n"

]
],
"output": {
"all": "| tee -a /var/log/cloud-init-output.log"
},
"preserve_hostname": false,
"syslog_fix_perms": [
"syslog:adm",
"root:adm",
"root:wheel",
"root:root"
],
"users": [
"default"
],
"vendor_data": {
"enabled": true,
"prefix": []
}

},
"cloud_name": "aws",
"distro": "ubuntu",
"distro_release": "focal",
"distro_version": "20.04",
"ds": {
"_doc": "EXPERIMENTAL: The structure and format of content scoped under the 'ds'

→˓key may change in subsequent releases of cloud-init.",
"_metadata_api_version": "2016-09-02",
"dynamic": {
"instance_identity": {
"document": {
"accountId": "329910648901",
"architecture": "x86_64",
"availabilityZone": "us-east-1b",
"billingProducts": null,
"devpayProductCodes": null,
"imageId": "ami-02e8aa396f8be3b6d",
"instanceId": "i-0929128ff2f73a2f1",
"instanceType": "t2.micro",
"kernelId": null,

(continues on next page)
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"marketplaceProductCodes": null,
"pendingTime": "2020-02-27T20:46:18Z",
"privateIp": "172.31.81.43",
"ramdiskId": null,
"region": "us-east-1",
"version": "2017-09-30"

},
"pkcs7": [
"MIAGCSqGSIb3DQ...",
"REDACTED",
"AhQUgq0iPWqPTVnT96tZE6L1XjjLHQAAAAAAAA=="

],
"rsa2048": [
"MIAGCSqGSIb...",
"REDACTED",
"clYQvuE45xXm7Yreg3QtQbrP//owl1eZHj6s350AAAAAAAA="

],
"signature": [
"dA+QV+LLCWCRNddnrKleYmh2GvYo+t8urDkdgmDSsPi",
"REDACTED",
"kDT4ygyJLFkd3b4qjAs="

]
}
},
"meta_data": {
"ami_id": "ami-02e8aa396f8be3b6d",
"ami_launch_index": "0",
"ami_manifest_path": "(unknown)",
"block_device_mapping": {
"ami": "/dev/sda1",
"root": "/dev/sda1"

},
"hostname": "ip-172-31-81-43.ec2.internal",
"instance_action": "none",
"instance_id": "i-0929128ff2f73a2f1",
"instance_type": "t2.micro",
"local_hostname": "ip-172-31-81-43.ec2.internal",
"local_ipv4": "172.31.81.43",
"mac": "12:7e:c9:93:29:af",
"metrics": {
"vhostmd": "<?xml version=\"1.0\" encoding=\"UTF-8\"?>"

},
"network": {
"interfaces": {
"macs": {
"12:7e:c9:93:29:af": {
"device_number": "0",
"interface_id": "eni-0c07a0474339b801d",
"ipv4_associations": {
"3.89.187.177": "172.31.81.43"
},
"local_hostname": "ip-172-31-81-43.ec2.internal",
"local_ipv4s": "172.31.81.43",
"mac": "12:7e:c9:93:29:af",
"owner_id": "329910648901",
"public_hostname": "ec2-3-89-187-177.compute-1.amazonaws.com",
"public_ipv4s": "3.89.187.177",

(continues on next page)
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"security_group_ids": "sg-0100038b68aa79986",
"security_groups": "launch-wizard-3",
"subnet_id": "subnet-04e2d12a",
"subnet_ipv4_cidr_block": "172.31.80.0/20",
"vpc_id": "vpc-210b4b5b",
"vpc_ipv4_cidr_block": "172.31.0.0/16",
"vpc_ipv4_cidr_blocks": "172.31.0.0/16"

}
}

}
},
"placement": {
"availability_zone": "us-east-1b"

},
"profile": "default-hvm",
"public_hostname": "ec2-3-89-187-177.compute-1.amazonaws.com",
"public_ipv4": "3.89.187.177",
"reservation_id": "r-0c481643d15766a02",
"security_groups": "launch-wizard-3",
"services": {
"domain": "amazonaws.com",
"partition": "aws"

}
}

},
"instance_id": "i-0929128ff2f73a2f1",
"kernel_release": "5.3.0-1010-aws",
"local_hostname": "ip-172-31-81-43",
"machine": "x86_64",
"platform": "ec2",
"public_ssh_keys": [],
"python_version": "3.7.6",
"region": "us-east-1",
"sensitive_keys": [],
"subplatform": "metadata (http://169.254.169.254)",
"sys_info": {
"dist": [
"ubuntu",
"20.04",
"focal"

],
"platform": "Linux-5.3.0-1010-aws-x86_64-with-Ubuntu-20.04-focal",
"python": "3.7.6",
"release": "5.3.0-1010-aws",
"system": "Linux",
"uname": [
"Linux",
"ip-172-31-81-43",
"5.3.0-1010-aws",
"#11-Ubuntu SMP Thu Jan 16 07:59:32 UTC 2020",
"x86_64",
"x86_64"

],
"variant": "ubuntu"

},
"system_platform": "Linux-5.3.0-1010-aws-x86_64-with-Ubuntu-20.04-focal",
"userdata": "#cloud-config\nssh_import_id: [<my-launchpad-id>]\n...",

(continues on next page)
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"v1": {
"_beta_keys": [
"subplatform"
],
"availability_zone": "us-east-1b",
"cloud_name": "aws",
"distro": "ubuntu",
"distro_release": "focal",
"distro_version": "20.04",
"instance_id": "i-0929128ff2f73a2f1",
"kernel": "5.3.0-1010-aws",
"local_hostname": "ip-172-31-81-43",
"machine": "x86_64",
"platform": "ec2",
"public_ssh_keys": [],
"python": "3.7.6",
"region": "us-east-1",
"subplatform": "metadata (http://169.254.169.254)",
"system_platform": "Linux-5.3.0-1010-aws-x86_64-with-Ubuntu-20.04-focal",
"variant": "ubuntu"

},
"variant": "ubuntu",
"vendordata": ""

}

1.10.3 Using instance-data

As of cloud-init v. 18.4, any variables present in /run/cloud-init/instance-data.json can be used in:

• User-data scripts

• Cloud config data

• Command line interface via cloud-init query or cloud-init devel render

Many clouds allow users to provide user-data to an instance at the time the instance is launched. Cloud-init supports a
number of User-Data Formats.

Both user-data scripts and #cloud-config data support jinja template rendering. When the first line of the provided
user-data begins with, ## template: jinja cloud-init will use jinja to render that file. Any instance-data-sensitive.json
variables are surfaced as dot-delimited jinja template variables because cloud-config modules are run as ‘root’ user.

Below are some examples of providing these types of user-data:

• Cloud config calling home with the ec2 public hostname and availability-zone

## template: jinja
#cloud-config
runcmd:

- echo 'EC2 public hostname allocated to instance: {{
ds.meta_data.public_hostname }}' > /tmp/instance_metadata

- echo 'EC2 availability zone: {{ v1.availability_zone }}' >>
/tmp/instance_metadata

- curl -X POST -d '{"hostname": "{{ds.meta_data.public_hostname }}",
"availability-zone": "{{ v1.availability_zone }}"}'
https://example.com

• Custom user-data script performing different operations based on region
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## template: jinja
#!/bin/bash
{% if v1.region == 'us-east-2' -%}
echo 'Installing custom proxies for {{ v1.region }}
sudo apt-get install my-xtra-fast-stack
{%- endif %}
...

Note: Trying to reference jinja variables that don’t exist in instance-data.json will result in warnings in /var/
log/cloud-init.log and the following string in your rendered user-data: CI_MISSING_JINJA_VAR/
<your_varname>.

Cloud-init also surfaces a command line tool cloud-init query which can assist developers or scripts with obtaining
instance metadata easily. See query for more information.

To cut down on keystrokes on the command line, cloud-init also provides top-level key aliases for any standardized
v# keys present. The preceding v1 is not required of v1.var_name These aliases will represent the value of the
highest versioned standard key. For example, cloud_name value will be v2.cloud_name if both v1 and v2 keys
are present in instance-data.json. The query command also publishes userdata and vendordata keys to the
root user which will contain the decoded user and vendor data provided to this instance. Non-root users referencing
userdata or vendordata keys will see only redacted values.

# List all top-level instance-data keys available
% cloud-init query --list-keys

# Find your EC2 ami-id
% cloud-init query ds.metadata.ami_id

# Format your cloud_name and region using jinja template syntax
% cloud-init query --format 'cloud: {{ v1.cloud_name }} myregion: {{
% v1.region }}'

Note: To save time designing a user-data template for a specific cloud’s instance-data.json, use the ‘render’ cloud-init
command on an instance booted on your favorite cloud. See devel for more information.

1.11 Datasources

Datasources are sources of configuration data for cloud-init that typically come from the user (e.g. userdata) or come
from the cloud that created the configuration drive (e.g. metadata). Typical userdata would include files, yaml, and
shell scripts while typical metadata would include server name, instance id, display name and other cloud specific
details.

Since there are multiple ways to provide this data (each cloud solution seems to prefer its own way) internally a
datasource abstract class was created to allow for a single way to access the different cloud systems methods to
provide this data through the typical usage of subclasses.

Any metadata processed by cloud-init’s datasources is persisted as /run/cloud-init/instance-data.json.
Cloud-init provides tooling to quickly introspect some of that data. See Instance Metadata for more information.
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1.11.1 Known Sources

The following is a list of documents for each supported datasource:

Alibaba Cloud (AliYun)

The AliYun datasource reads data from Alibaba Cloud ECS. Support is present in cloud-init since 0.7.9.

Metadata Service

The Alibaba Cloud metadata service is available at the well known url http://100.100.100.200/. For more
information see Alibaba Cloud ECS on metadata.

Versions

Like the EC2 metadata service, Alibaba Cloud’s metadata service provides versioned data under specific paths. As of
April 2018, there are only 2016-01-01 and latest versions.

It is expected that the dated version will maintain a stable interface but latest may change content at a future date.

Cloud-init uses the 2016-01-01 version.

You can list the versions available to your instance with:

$ curl http://100.100.100.200/
2016-01-01
latest

Metadata

Instance metadata can be queried at http://100.100.100.200/2016-01-01/meta-data

$ curl http://100.100.100.200/2016-01-01/meta-data
dns-conf/
eipv4
hostname
image-id
instance-id
instance/
mac
network-type
network/
ntp-conf/
owner-account-id
private-ipv4
public-keys/
region-id
serial-number
source-address
sub-private-ipv4-list
vpc-cidr-block
vpc-id
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Userdata

If provided, user-data will appear at http://100.100.100.200/2016-01-01/user-data. If no user-data
is provided, this will return a 404.

$ curl http://100.100.100.200/2016-01-01/user-data
#!/bin/sh
echo "Hello World."

Alt Cloud

The datasource altcloud will be used to pick up user data on RHEVm and vSphere.

RHEVm

For RHEVm v3.0 the userdata is injected into the VM using floppy injection via the RHEVm dashboard “Custom
Properties”.

The format of the Custom Properties entry must be:

floppyinject=user-data.txt:<base64 encoded data>

For example to pass a simple bash script:

% cat simple_script.bash
#!/bin/bash
echo "Hello Joe!" >> /tmp/JJV_Joe_out.txt

% base64 < simple_script.bash
IyEvYmluL2Jhc2gKZWNobyAiSGVsbG8gSm9lISIgPj4gL3RtcC9KSlZfSm9lX291dC50eHQK

To pass this example script to cloud-init running in a RHEVm v3.0 VM set the “Custom Properties” when creating the
RHEMv v3.0 VM to:

floppyinject=user-data.
→˓txt:IyEvYmluL2Jhc2gKZWNobyAiSGVsbG8gSm9lISIgPj4gL3RtcC9KSlZfSm9lX291dC50eHQK

NOTE: The prefix with file name must be: floppyinject=user-data.txt:

It is also possible to launch a RHEVm v3.0 VM and pass optional user data to it using the Delta Cloud.

For more information on Delta Cloud see: http://deltacloud.apache.org

vSphere

For VMWare’s vSphere the userdata is injected into the VM as an ISO via the cdrom. This can be done using the
vSphere dashboard by connecting an ISO image to the CD/DVD drive.

To pass this example script to cloud-init running in a vSphere VM set the CD/DVD drive when creating the vSphere
VM to point to an ISO on the data store.

Note: The ISO must contain the user data.

For example, to pass the same simple_script.bash to vSphere:
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Create the ISO

% mkdir my-iso

NOTE: The file name on the ISO must be: user-data.txt

% cp simple_script.bash my-iso/user-data.txt
% genisoimage -o user-data.iso -r my-iso

Verify the ISO

% sudo mkdir /media/vsphere_iso
% sudo mount -o loop user-data.iso /media/vsphere_iso
% cat /media/vsphere_iso/user-data.txt
% sudo umount /media/vsphere_iso

Then, launch the vSphere VM the ISO user-data.iso attached as a CDROM.

It is also possible to launch a vSphere VM and pass optional user data to it using the Delta Cloud.

For more information on Delta Cloud see: http://deltacloud.apache.org

Azure

This datasource finds metadata and user-data from the Azure cloud platform.

walinuxagent

walinuxagent has several functions within images. For cloud-init specifically, the relevant functionality it performs is
to register the instance with the Azure cloud platform at boot so networking will be permitted. For more information
about the other functionality of walinuxagent, see Azure’s documentation for more details. (Note, however, that only
one of walinuxagent’s provisioning and cloud-init should be used to perform instance customisation.)

If you are configuring walinuxagent yourself, you will want to ensure that you have Provisioning.UseCloudInit set to
y.

Builtin Agent

An alternative to using walinuxagent to register to the Azure cloud platform is to use the __builtin__ agent
command. This section contains more background on what that code path does, and how to enable it.

The Azure cloud platform provides initial data to an instance via an attached CD formatted in UDF. That CD con-
tains a ‘ovf-env.xml’ file that provides some information. Additional information is obtained via interaction with the
“endpoint”.

To find the endpoint, we now leverage the dhcp client’s ability to log its known values on exit. The endpoint
server is special DHCP option 245. Depending on your networking stack, this can be done by calling a script
in /etc/dhcp/dhclient-exit-hooks or a file in /etc/NetworkManager/dispatcher.d. Both of these call a sub-command
‘dhclient_hook’ of cloud-init itself. This sub-command will write the client information in json format to /run/cloud-
init/dhclient.hook/<interface>.json.

In order for cloud-init to leverage this method to find the endpoint, the cloud.cfg file must contain:

108 Chapter 1. Getting help

https://www.vmware.com/products/datacenter-virtualization/vsphere/overview.html
https://www.vmware.com/products/datacenter-virtualization/vsphere/overview.html
http://deltacloud.apache.org
https://github.com/Azure/WALinuxAgent#introduction
https://github.com/Azure/WALinuxAgent#provisioningusecloudinit


cloud-init, Release 20.2

datasource:
Azure:
set_hostname: False
agent_command: __builtin__

If those files are not available, the fallback is to check the leases file for the endpoint server (again option 245).

You can define the path to the lease file with the ‘dhclient_lease_file’ configuration.

IMDS

Azure provides the instance metadata service (IMDS) which is a REST service on 169.254.169.254 providing
additional configuration information to the instance. Cloud-init uses the IMDS for:

• network configuration for the instance which is applied per boot

• a preprovisioing gate which blocks instance configuration until Azure fabric is ready to provision

Configuration

The following configuration can be set for the datasource in system configuration (in /etc/cloud/cloud.cfg or
/etc/cloud/cloud.cfg.d/).

The settings that may be configured are:

• agent_command: Either __builtin__ (default) or a command to run to getcw metadata. If __builtin__, get
metadata from walinuxagent. Otherwise run the provided command to obtain metadata.

• apply_network_config: Boolean set to True to use network configuration described by Azure’s IMDS endpoint
instead of fallback network config of dhcp on eth0. Default is True. For Ubuntu 16.04 or earlier, default is False.

• data_dir: Path used to read metadata files and write crawled data.

• dhclient_lease_file: The fallback lease file to source when looking for custom DHCP option 245 from Azure
fabric.

• disk_aliases: A dictionary defining which device paths should be interpreted as ephemeral images. See
cc_disk_setup module for more info.

• hostname_bounce: A dictionary Azure hostname bounce behavior to react to metadata changes. The
‘hostname_bounce: command’ entry can be either the literal string ‘builtin’ or a command to execute.
The command will be invoked after the hostname is set, and will have the ‘interface’ in its environment. If
set_hostname is not true, then hostname_bounce will be ignored. An example might be:

command: ["sh", "-c", "killall dhclient; dhclient $interface"]

• hostname_bounce: A dictionary Azure hostname bounce behavior to react to metadata changes. Azure will
throttle ifup/down in some cases after metadata has been updated to inform dhcp server about updated host-
names.

• set_hostname: Boolean set to True when we want Azure to set the hostname based on metadata.

Configuration for the datasource can also be read from a dscfg entry in the
LinuxProvisioningConfigurationSet. Content in dscfg node is expected to be base64 encoded
yaml content, and it will be merged into the ‘datasource: Azure’ entry.

An example configuration with the default values is provided below:
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datasource:
Azure:
agent_command: __builtin__
apply_network_config: true
data_dir: /var/lib/waagent
dhclient_lease_file: /var/lib/dhcp/dhclient.eth0.leases
disk_aliases:

ephemeral0: /dev/disk/cloud/azure_resource
hostname_bounce:
interface: eth0
command: builtin
policy: true
hostname_command: hostname

set_hostname: true

Userdata

Userdata is provided to cloud-init inside the ovf-env.xml file. Cloud-init expects that user-data will be provided
as base64 encoded value inside the text child of a element named UserData or CustomData which is a di-
rect child of the LinuxProvisioningConfigurationSet (a sibling to UserName) If both UserData and
CustomData are provided behavior is undefined on which will be selected.

In the example below, user-data provided is ‘this is my userdata’, and the datasource config provided is
{"agent_command": ["start", "walinuxagent"]}. That agent command will take affect as if it were
specified in system config.

Example:

<wa:ProvisioningSection>
<wa:Version>1.0</wa:Version>
<LinuxProvisioningConfigurationSet

xmlns="http://schemas.microsoft.com/windowsazure"
xmlns:i="http://www.w3.org/2001/XMLSchema-instance">

<ConfigurationSetType>LinuxProvisioningConfiguration</ConfigurationSetType>
<HostName>myHost</HostName>
<UserName>myuser</UserName>
<UserPassword/>
<CustomData>dGhpcyBpcyBteSB1c2VyZGF0YQ===</CustomData>
<dscfg>eyJhZ2VudF9jb21tYW5kIjogWyJzdGFydCIsICJ3YWxpbnV4YWdlbnQiXX0=</dscfg>
<DisableSshPasswordAuthentication>true</DisableSshPasswordAuthentication>
<SSH>
<PublicKeys>
<PublicKey>
<Fingerprint>6BE7A7C3C8A8F4B123CCA5D0C2F1BE4CA7B63ED7</Fingerprint>
<Path>this-value-unused</Path>

</PublicKey>
</PublicKeys>

</SSH>
</LinuxProvisioningConfigurationSet>

</wa:ProvisioningSection>

hostname

When the user launches an instance, they provide a hostname for that instance. The hostname is provided to the
instance in the ovf-env.xml file as HostName.
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Whatever value the instance provides in its dhcp request will resolve in the domain returned in the ‘search’ request.

The interesting issue is that a generic image will already have a hostname configured. The ubuntu cloud images
have ‘ubuntu’ as the hostname of the system, and the initial dhcp request on eth0 is not guaranteed to occur after the
datasource code has been run. So, on first boot, that initial value will be sent in the dhcp request and that value will
resolve.

In order to make the HostName provided in the ovf-env.xml resolve, a dhcp request must be made with the new value.
Walinuxagent (in its current version) handles this by polling the state of hostname and bouncing (‘ifdown eth0;
ifup eth0’ the network interface if it sees that a change has been made.

cloud-init handles this by setting the hostname in the DataSource’s ‘get_data’ method via ‘hostname $HostName’,
and then bouncing the interface. This behavior can be configured or disabled in the datasource config. See ‘Configu-
ration’ above.

CloudSigma

This datasource finds metadata and user-data from the CloudSigma cloud platform. Data transfer occurs through a
virtual serial port of the CloudSigma’s VM and the presence of network adapter is NOT a requirement, See server
context in the public documentation for more information.

Setting a hostname

By default the name of the server will be applied as a hostname on the first boot.

Providing user-data

You can provide user-data to the VM using the dedicated meta field in the server context cloudinit-user-data.
By default cloud-config format is expected there and the #cloud-config header could be omitted. However since
this is a raw-text field you could provide any of the valid config formats.

You have the option to encode your user-data using Base64. In order to do that you have to add the
cloudinit-user-data field to the base64_fields. The latter is a comma-separated field with all the meta
fields whit base64 encoded values.

If your user-data does not need an internet connection you can create a meta field in the server context
cloudinit-dsmode and set “local” as value. If this field does not exist the default value is “net”.

CloudStack

Apache CloudStack expose user-data, meta-data, user password and account SSH key thru the Virtual-Router. The
datasource obtains the VR address via dhcp lease information given to the instance. For more details on meta-data and
user-data, refer the CloudStack Administrator Guide.

URLs to access user-data and meta-data from the Virtual Machine. Here 10.1.1.1 is the Virtual Router IP:

http://10.1.1.1/latest/user-data
http://10.1.1.1/latest/meta-data
http://10.1.1.1/latest/meta-data/{metadata type}
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Configuration

The following configuration can be set for the datasource in system configuration (in /etc/cloud/cloud.cfg or
/etc/cloud/cloud.cfg.d/ ).

The settings that may be configured are:

• max_wait: the maximum amount of clock time in seconds that should be spent searching metadata_urls. A
value less than zero will result in only one request being made, to the first in the list. (default: 120)

• timeout: the timeout value provided to urlopen for each individual http request. This is used both when selecting
a metadata_url and when crawling the metadata service. (default: 50)

An example configuration with the default values is provided below:

datasource:
CloudStack:
max_wait: 120
timeout: 50
datasource_list:
- CloudStack

Config Drive

The configuration drive datasource supports the OpenStack configuration drive disk.

See the config drive extension and metadata introduction in the public documentation for more informa-
tion.

By default, cloud-init does always consider this source to be a full-fledged datasource. Instead, the typical behavior is
to assume it is really only present to provide networking information. Cloud-init will copy off the network information,
apply it to the system, and then continue on. The “full” datasource could then be found in the EC2 metadata service.
If this is not the case then the files contained on the located drive must provide equivalents to what the EC2 metadata
service would provide (which is typical of the version 2 support listed below)

Version 1

Note: Version 1 is legacy and should be considered deprecated. Version 2 has been supported in OpenStack since
2012.2 (Folsom).

The following criteria are required to as a config drive:

1. Must be formatted with vfat filesystem

2. Must contain one of the following files

/etc/network/interfaces
/root/.ssh/authorized_keys
/meta.js

/etc/network/interfaces

This file is laid down by nova in order to pass static networking information to the guest. Cloud-init will
copy it off of the config-drive and into /etc/network/interfaces (or convert it to RH format) as soon as it
can, and then attempt to bring up all network interfaces.

/root/.ssh/authorized_keys
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This file is laid down by nova, and contains the ssk keys that were provided to nova on instance creation
(nova-boot –key . . . .)

/meta.js

meta.js is populated on the config-drive in response to the user passing “meta flags” (nova boot –meta
key=value . . . ). It is expected to be json formatted.

Version 2

The following criteria are required to as a config drive:

1. Must be formatted with vfat or iso9660 filesystem or have a filesystem label of config-2

2. The files that will typically be present in the config drive are:

openstack/
- 2012-08-10/ or latest/
- meta_data.json
- user_data (not mandatory)

- content/
- 0000 (referenced content files)
- 0001
- ....

ec2
- latest/
- meta-data.json (not mandatory)

Keys and values

Cloud-init’s behavior can be modified by keys found in the meta.js (version 1 only) file in the following ways.

dsmode:
values: local, net, pass
default: pass

This is what indicates if configdrive is a final data source or not. By default it is ‘pass’, meaning this datasource should
not be read. Set it to ‘local’ or ‘net’ to stop cloud-init from continuing on to search for other data sources after network
config.

The difference between ‘local’ and ‘net’ is that local will not require networking to be up before user-data actions (or
boothooks) are run.

instance-id:
default: iid-dsconfigdrive

This is utilized as the metadata’s instance-id. It should generally be unique, as it is what is used to determine “is this a
new instance”.

public-keys:
default: None

If present, these keys will be used as the public keys for the instance. This value overrides the content in autho-
rized_keys.

Note: it is likely preferable to provide keys via user-data
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user-data:
default: None

This provides cloud-init user-data. See examples for what all can be present here.

Digital Ocean

The DigitalOcean datasource consumes the content served from DigitalOcean’s metadata service. This metadata
service serves information about the running droplet via HTTP over the link local address 169.254.169.254. The
metadata API endpoints are fully described at https://developers.digitalocean.com/metadata/.

Configuration

DigitalOcean’s datasource can be configured as follows:

datasource:

DigitalOcean: retries: 3 timeout: 2

• retries: Determines the number of times to attempt to connect to the metadata service

• timeout: Determines the timeout in seconds to wait for a response from the metadata service

E24Cloud

E24Cloud <https://www.e24cloud.com/en/> platform provides an AWS Ec2 metadata service clone. It identifies itself
to guests using the dmi system-manufacturer (/sys/class/dmi/id/sys_vendor).

Amazon EC2

The EC2 datasource is the oldest and most widely used datasource that cloud-init supports. This datasource interacts
with a magic ip that is provided to the instance by the cloud provider. Typically this ip is 169.254.169.254 of
which at this ip a http server is provided to the instance so that the instance can make calls to get instance userdata and
instance metadata.

Metadata is accessible via the following URL:

GET http://169.254.169.254/2009-04-04/meta-data/
ami-id
ami-launch-index
ami-manifest-path
block-device-mapping/
hostname
instance-id
instance-type
local-hostname
local-ipv4
placement/
public-hostname
public-ipv4
public-keys/
reservation-id
security-groups

Userdata is accessible via the following URL:
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GET http://169.254.169.254/2009-04-04/user-data
1234,fred,reboot,true | 4512,jimbo, | 173,,,

Note that there are multiple versions of this data provided, cloud-init by default uses 2009-04-04 but newer versions can
be supported with relative ease (newer versions have more data exposed, while maintaining backward compatibility
with the previous versions). Version 2016-09-02 is required for secondary IP address support.

To see which versions are supported from your cloud provider use the following URL:

GET http://169.254.169.254/
1.0
2007-01-19
2007-03-01
2007-08-29
2007-10-10
2007-12-15
2008-02-01
2008-09-01
2009-04-04
...
latest

Configuration

The following configuration can be set for the datasource in system configuration (in /etc/cloud/cloud.cfg or
/etc/cloud/cloud.cfg.d/ ).

The settings that may be configured are:

• metadata_urls: This list of urls will be searched for an Ec2 metadata service. The first entry that successfully
returns a 200 response for <url>/<version>/meta-data/instance-id will be selected. (default: [‘http://169.254.
169.254’, ‘http://instance-data:8773’]).

• max_wait: the maximum amount of clock time in seconds that should be spent searching metadata_urls. A
value less than zero will result in only one request being made, to the first in the list. (default: 120)

• timeout: the timeout value provided to urlopen for each individual http request. This is used both when selecting
a metadata_url and when crawling the metadata service. (default: 50)

• apply_full_imds_network_config: Boolean (default: True) to allow cloud-init to configure any secondary NICs
and secondary IPs described by the metadata service. All network interfaces are configured with DHCP (v4)
to obtain an primary IPv4 address and route. Interfaces which have a non-empty ‘ipv6s’ list will also enable
DHCPv6 to obtain a primary IPv6 address and route. The DHCP response (v4 and v6) return an IP that matches
the first element of local-ipv4s and ipv6s lists respectively. All additional values (secondary addresses) in the
static ip lists will be added to interface.

An example configuration with the default values is provided below:

datasource:
Ec2:
metadata_urls: ["http://169.254.169.254:80", "http://instance-data:8773"]
max_wait: 120
timeout: 50
apply_full_imds_network_config: true
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Notes

• There are 2 types of EC2 instances network-wise: VPC ones (Virtual Private Cloud) and Classic ones (also
known as non-VPC). One major difference between them is that Classic instances have their MAC address
changed on stop/restart operations, so cloud-init will recreate the network config file for EC2 Classic instances
every boot. On VPC instances this file is generated only in the first boot of the instance. The check for the
instance type is performed by is_classic_instance() method.

• For EC2 instances with multiple network interfaces (NICs) attached, dhcp4 will be enabled to obtain the primary
private IPv4 address of those NICs. Wherever dhcp4 or dhcp6 is enabled for a NIC, a dhcp route-metric will
be added with the value of <device-number + 1> * 100 to ensure dhcp routes on the primary NIC are
preferred to any secondary NICs. For example: the primary NIC will have a DHCP route-metric of 100, the
next NIC will be 200.

Exoscale

This datasource supports reading from the metadata server used on the Exoscale platform.

Use of the Exoscale datasource is recommended to benefit from new features of the Exoscale platform.

The datasource relies on the availability of a compatible metadata server (http://169.254.169.254 is used by
default) and its companion password server, reachable at the same address (by default on port 8080).

Crawling of metadata

The metadata service and password server are crawled slightly differently:

• The “metadata service” is crawled every boot.

• The password server is also crawled every boot (the Exoscale datasource forces the password module to run
with “frequency always”).

In the password server case, the following rules apply in order to enable the “restore instance password” functionality:

• If a password is returned by the password server, it is then marked “saved” by the cloud-init datasource. Subse-
quent boots will skip setting the password (the password server will return “saved_password”).

• When the instance password is reset (via the Exoscale UI), the password server will return the non-empty
password at next boot, therefore causing cloud-init to reset the instance’s password.

Configuration

Users of this datasource are discouraged from changing the default settings unless instructed to by Exoscale support.

The following settings are available and can be set for the datasource in system configuration (in
/etc/cloud/cloud.cfg.d/ ).

The settings available are:

• metadata_url: The URL for the metadata service (defaults to http://169.254.169.254)

• api_version: The API version path on which to query the instance metadata (defaults to 1.0)

• password_server_port: The port (on the metadata server) on which the password server listens (defaults to
8080).

• timeout: the timeout value provided to urlopen for each individual http request. (defaults to 10)
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• retries: The number of retries that should be done for an http request (defaults to 6)

An example configuration with the default values is provided below:

datasource:
Exoscale:
metadata_url: "http://169.254.169.254"
api_version: "1.0"
password_server_port: 8080
timeout: 10
retries: 6

Fallback/None

This is the fallback datasource when no other datasource can be selected. It is the equivalent of a empty datasource
in that it provides a empty string as userdata and a empty dictionary as metadata. It is useful for testing as well as
for when you do not have a need to have an actual datasource to meet your instance requirements (ie you just want to
run modules that are not concerned with any external data). It is typically put at the end of the datasource search list
so that if all other datasources are not matched, then this one will be so that the user is not left with an inaccessible
instance.

Note: the instance id that this datasource provides is iid-datasource-none.

Google Compute Engine

The GCE datasource gets its data from the internal compute metadata server. Metadata can be queried at the URL
‘http://metadata.google.internal/computeMetadata/v1/’ from within an instance. For more in-
formation see the GCE metadata docs.

Currently the default project and instance level metadatakeys keys project/attributes/sshKeys and
instance/attributes/ssh-keys are merged to provide public-keys.

user-data and user-data-encoding can be provided to cloud-init by setting those custom metadata keys for
an instance.

MAAS

TODO

For now see: http://maas.ubuntu.com/

NoCloud

The data source NoCloud allows the user to provide user-data and meta-data to the instance without running a network
service (or even without having a network at all).

You can provide meta-data and user-data to a local vm boot via files on a vfat or iso9660 filesystem. The filesystem
volume label must be cidata or CIDATA.

Alternatively, you can provide meta-data via kernel command line or SMBIOS “serial number” option. The data must
be passed in the form of a string:

ds=nocloud[;key=val;key=val]

or
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ds=nocloud-net[;key=val;key=val]

The permitted keys are:

• h or local-hostname

• i or instance-id

• s or seedfrom

With ds=nocloud, the seedfrom value must start with / or file://. With ds=nocloud-net, the
seedfrom value must start with http:// or https://.

e.g. you can pass this option to QEMU:

-smbios type=1,serial=ds=nocloud-net;s=http://10.10.0.1:8000/

to cause NoCloud to fetch the full meta-data from http://10.10.0.1:8000/meta-data after the network initialization is
complete.

These user-data and meta-data files are expected to be in the following format.

/user-data
/meta-data

Basically, user-data is simply user-data and meta-data is a yaml formatted file representing what you’d find in the EC2
metadata service.

Given a disk ubuntu 12.04 cloud image in ‘disk.img’, you can create a sufficient disk by following the example below.

## create user-data and meta-data files that will be used
## to modify image on first boot
$ { echo instance-id: iid-local01; echo local-hostname: cloudimg; } > meta-data

$ printf "#cloud-config\npassword: passw0rd\nchpasswd: { expire: False }\nssh_pwauth:
→˓True\n" > user-data

## create a disk to attach with some user-data and meta-data
$ genisoimage -output seed.iso -volid cidata -joliet -rock user-data meta-data

## alternatively, create a vfat filesystem with same files
## $ truncate --size 2M seed.img
## $ mkfs.vfat -n cidata seed.img
## $ mcopy -oi seed.img user-data meta-data ::

## create a new qcow image to boot, backed by your original image
$ qemu-img create -f qcow2 -b disk.img boot-disk.img

## boot the image and login as 'ubuntu' with password 'passw0rd'
## note, passw0rd was set as password through the user-data above,
## there is no password set on these images.
$ kvm -m 256 \

-net nic -net user,hostfwd=tcp::2222-:22 \
-drive file=boot-disk.img,if=virtio \
-drive file=seed.iso,if=virtio

Note: that the instance-id provided (iid-local01 above) is what is used to determine if this is “first boot”. So if
you are making updates to user-data you will also have to change that, or start the disk fresh.

Also, you can inject an /etc/network/interfaces file by providing the content for that file in the
network-interfaces field of metadata.

118 Chapter 1. Getting help

http://10.10.0.1:8000/meta-data


cloud-init, Release 20.2

Example metadata:

instance-id: iid-abcdefg
network-interfaces: |
iface eth0 inet static
address 192.168.1.10
network 192.168.1.0
netmask 255.255.255.0
broadcast 192.168.1.255
gateway 192.168.1.254

hostname: myhost

Network configuration can also be provided to cloud-init in either Networking Config Version 1 or Networking Config
Version 2 by providing that yaml formatted data in a file named network-config. If found, this file will override
a network-interfaces file.

See an example below. Note specifically that this file does not have a top level network key as it it is already assumed
to be network configuration based on the filename.

version: 1
config:

- type: physical
name: interface0
mac_address: "52:54:00:12:34:00"
subnets:

- type: static
address: 192.168.1.10
netmask: 255.255.255.0
gateway: 192.168.1.254

version: 2
ethernets:
interface0:
match:

mac_address: "52:54:00:12:34:00"
set-name: interface0
addresses:
- 192.168.1.10/255.255.255.0

gateway4: 192.168.1.254

OpenNebula

The OpenNebula (ON) datasource supports the contextualization disk.

See contextualization overview, contextualizing VMs and network configuration in the public documen-
tation for more information.

OpenNebula’s virtual machines are contextualized (parametrized) by CD-ROM image, which contains a shell script
context.sh with custom variables defined on virtual machine start. There are no fixed contextualization variables, but
the datasource accepts many used and recommended across the documentation.

Datasource configuration

Datasource accepts following configuration options.
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dsmode:
values: local, net, disabled
default: net

Tells if this datasource will be processed in ‘local’ (pre-networking) or ‘net’ (post-networking) stage or even com-
pletely ‘disabled’.

parseuser:
default: nobody

Unprivileged system user used for contextualization script processing.

Contextualization disk

The following criteria are required:

1. Must be formatted with iso9660 filesystem or have a filesystem label of CONTEXT or CDROM

2. Must contain file context.sh with contextualization variables. File is generated by OpenNebula, it has a
KEY=’VALUE’ format and can be easily read by bash

Contextualization variables

There are no fixed contextualization variables in OpenNebula, no standard. Following variables were found on various
places and revisions of the OpenNebula documentation. Where multiple similar variables are specified, only first
found is taken.

DSMODE

Datasource mode configuration override. Values: local, net, disabled.

DNS
ETH<x>_IP
ETH<x>_NETWORK
ETH<x>_MASK
ETH<x>_GATEWAY
ETH<x>_DOMAIN
ETH<x>_DNS

Static network configuration.

HOSTNAME

Instance hostname.

PUBLIC_IP
IP_PUBLIC
ETH0_IP

If no hostname has been specified, cloud-init will try to create hostname from instance’s IP address in ‘local’ dsmode.
In ‘net’ dsmode, cloud-init tries to resolve one of its IP addresses to get hostname.

SSH_KEY
SSH_PUBLIC_KEY
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One or multiple SSH keys (separated by newlines) can be specified.

USER_DATA
USERDATA

cloud-init user data.

Example configuration

This example cloud-init configuration (cloud.cfg) enables OpenNebula datasource only in ‘net’ mode.

disable_ec2_metadata: True
datasource_list: ['OpenNebula']
datasource:

OpenNebula:
dsmode: net
parseuser: nobody

Example VM’s context section

CONTEXT=[
PUBLIC_IP="$NIC[IP]",
SSH_KEY="$USER[SSH_KEY]

$USER[SSH_KEY1]
$USER[SSH_KEY2] ",

USER_DATA="#cloud-config
# see https://help.ubuntu.com/community/CloudInit

packages: []

mounts:
- [vdc,none,swap,sw,0,0]
runcmd:
- echo 'Instance has been configured by cloud-init.' | wall
" ]

OpenStack

This datasource supports reading data from the OpenStack Metadata Service.

Discovery

To determine whether a platform looks like it may be OpenStack, cloud-init checks the following environment at-
tributes as a potential OpenStack platform:

• Maybe OpenStack if

– non-x86 cpu architecture: because DMI data is buggy on some arches

• Is OpenStack if x86 architecture and ANY of the following

– /proc/1/environ: Nova-lxd contains product_name=OpenStack Nova

– DMI product_name: Either Openstack Nova or OpenStack Compute
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– DMI chassis_asset_tag is OpenTelekomCloud, SAP CCloud VM, OpenStack Nova (since 19.2) or Open-
Stack Compute (since 19.2)

Configuration

The following configuration can be set for the datasource in system configuration (in /etc/cloud/cloud.cfg or
/etc/cloud/cloud.cfg.d/ ).

The settings that may be configured are:

• metadata_urls: This list of urls will be searched for an OpenStack metadata service. The first entry that
successfully returns a 200 response for <url>/openstack will be selected. (default: [‘http://169.254.169.254’]).

• max_wait: the maximum amount of clock time in seconds that should be spent searching metadata_urls. A
value less than zero will result in only one request being made, to the first in the list. (default: -1)

• timeout: the timeout value provided to urlopen for each individual http request. This is used both when selecting
a metadata_url and when crawling the metadata service. (default: 10)

• retries: The number of retries that should be done for an http request. This value is used only after metadata_url
is selected. (default: 5)

• apply_network_config: A boolean specifying whether to configure the network for the instance based on net-
work_data.json provided by the metadata service. When False, only configure dhcp on the primary nic for this
instances. (default: True)

An example configuration with the default values is provided below:

datasource:
OpenStack:
metadata_urls: ["http://169.254.169.254"]
max_wait: -1
timeout: 10
retries: 5
apply_network_config: True

Vendor Data

The OpenStack metadata server can be configured to serve up vendor data which is available to all instances for
consumption. OpenStack vendor data is, generally, a JSON object.

cloud-init will look for configuration in the cloud-init attribute of the vendor data JSON object. cloud-init pro-
cesses this configuration using the same handlers as user data, so any formats that work for user data should work for
vendor data.

For example, configuring the following as vendor data in OpenStack would upgrade packages and install htop on all
instances:

{"cloud-init": "#cloud-config\npackage_upgrade: True\npackages:\n - htop"}

For more general information about how cloud-init handles vendor data, including how it can be disabled by users on
instances, see Vendor Data.

Oracle

This datasource reads metadata, vendor-data and user-data from Oracle Compute Infrastructure (OCI).
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Oracle Platform

OCI provides bare metal and virtual machines. In both cases, the platform identifies itself via DMI data in the chassis
asset tag with the string ‘OracleCloud.com’.

Oracle’s platform provides a metadata service that mimics the 2013-10-17 version of OpenStack metadata service.
Initially support for Oracle was done via the OpenStack datasource.

Cloud-init has a specific datasource for Oracle in order to:

a. allow and support future growth of the OCI platform.

b. address small differences between OpenStack and Oracle metadata implementation.

Configuration

The following configuration can be set for the datasource in system configuration (in /etc/cloud/cloud.cfg or
/etc/cloud/cloud.cfg.d/).

The settings that may be configured are:

• configure_secondary_nics: A boolean, defaulting to False. If set to True on an OCI Virtual Machine, cloud-init
will fetch networking metadata from Oracle’s IMDS and use it to configure the non-primary network interface
controllers in the system. If set to True on an OCI Bare Metal Machine, it will have no effect (though this may
change in the future).

An example configuration with the default values is provided below:

datasource:
Oracle:
configure_secondary_nics: false

OVF

The OVF Datasource provides a datasource for reading data from on an Open Virtualization Format ISO transport.

For further information see a full working example in cloud-init’s source code tree in doc/sources/ovf

Rbx Cloud

The Rbx datasource consumes the metadata drive available on platform HyperOne and Rootbox platform.

Datasource supports, in particular, network configurations, hostname, user accounts and user metadata.

Metadata drive

Drive metadata is a FAT-formatted partition with the `CLOUDMD` label on the system disk. Its contents are refreshed
each time the virtual machine is restarted, if the partition exists. For more information see HyperOne Virtual Machine
docs.

SmartOS Datasource

This datasource finds metadata and user-data from the SmartOS virtualization platform (i.e. Joyent).

Please see http://smartos.org/ for information about SmartOS.
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SmartOS Platform

The SmartOS virtualization platform uses meta-data to the instance via the second serial console. On Linux, this is
/dev/ttyS1. The data is a provided via a simple protocol: something queries for the data, the console responds responds
with the status and if “SUCCESS” returns until a single “.n”.

New versions of the SmartOS tooling will include support for base64 encoded data.

Meta-data channels

Cloud-init supports three modes of delivering user/meta-data via the flexible channels of SmartOS.

• user-data is written to /var/db/user-data

– per the spec, user-data is for consumption by the end-user, not provisioning tools

– cloud-init entirely ignores this channel other than writing it to disk

– removal of the meta-data key means that /var/db/user-data gets removed

– a backup of previous meta-data is maintained as /var/db/user-data.<timestamp>. <timestamp> is the epoch
time when cloud-init ran

• user-script is written to /var/lib/cloud/scripts/per-boot/99_user_data

– this is executed each boot

– a link is created to /var/db/user-script

– previous versions of the user-script is written to /var/lib/cloud/scripts/per-
boot.backup/99_user_script.<timestamp>. - <timestamp> is the epoch time when cloud-init ran.

– when the ‘user-script’ meta-data key goes missing, the user-script is removed from the file system, although
a backup is maintained.

– if the script does not start with a shebang (i.e. starts with #!<executable>), then or is not an executable,
cloud-init will add a shebang of “#!/bin/bash”

• cloud-init:user-data is treated like on other Clouds.

– this channel is used for delivering _all_ cloud-init instructions

– scripts delivered over this channel must be well formed (i.e. must have a shebang)

Cloud-init supports reading the traditional meta-data fields supported by the SmartOS tools. These are:

• root_authorized_keys

• hostname

• enable_motd_sys_info

• iptables_disable

Note: At this time iptables_disable and enable_motd_sys_info are read but are not actioned.

Disabling user-script

Cloud-init uses the per-boot script functionality to handle the execution of the user-script. If you want to prevent this
use a cloud-config of:
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#cloud-config
cloud_final_modules:
- scripts-per-once
- scripts-per-instance
- scripts-user
- ssh-authkey-fingerprints
- keys-to-console
- phone-home
- final-message
- power-state-change

Alternatively you can use the json patch method

#cloud-config-jsonp
[

{ "op": "replace",
"path": "/cloud_final_modules",
"value": ["scripts-per-once",

"scripts-per-instance",
"scripts-user",
"ssh-authkey-fingerprints",
"keys-to-console",
"phone-home",
"final-message",
"power-state-change"]

}
]

The default cloud-config includes “script-per-boot”. Cloud-init will still ingest and write the user-data but will not
execute it, when you disable the per-boot script handling.

Note: Unless you have an explicit use-case, it is recommended that you not disable the per-boot script execution,
especially if you are using any of the life-cycle management features of SmartOS.

The cloud-config needs to be delivered over the cloud-init:user-data channel in order for cloud-init to ingest it.

base64

The following are exempt from base64 encoding, owing to the fact that they are provided by SmartOS:

• root_authorized_keys

• enable_motd_sys_info

• iptables_disable

• user-data

• user-script

This list can be changed through system config of variable ‘no_base64_decode’.

This means that user-script and user-data as well as other values can be base64 encoded. Since Cloud-init can only
guess as to whether or not something is truly base64 encoded, the following meta-data keys are hints as to whether or
not to base64 decode something:

• base64_all: Except for excluded keys, attempt to base64 decode the values. If the value fails to decode properly,
it will be returned in its text

• base64_keys: A comma delimited list of which keys are base64 encoded.
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• b64-<key>: for any key, if there exists an entry in the metadata for ‘b64-<key>’ Then ‘b64-<key>’ is expected
to be a plaintext boolean indicating whether or not its value is encoded.

• no_base64_decode: This is a configuration setting (i.e. /etc/cloud/cloud.cfg.d) that sets which values should not
be base64 decoded.

disk_aliases and ephemeral disk

By default, SmartOS only supports a single ephemeral disk. That disk is completely empty (un-partitioned with no
filesystem).

The SmartOS datasource has built-in cloud-config which instructs the ‘disk_setup’ module to partition and format the
ephemeral disk.

You can control the disk_setup then in 2 ways:

1. through the datasource config, you can change the ‘alias’ of ephermeral0 to reference another device. The
default is:

‘disk_aliases’: {‘ephemeral0’: ‘/dev/vdb’},

Which means anywhere disk_setup sees a device named ‘ephemeral0’ then /dev/vdb will be substituted.

2. you can provide disk_setup or fs_setup data in user-data to overwrite the datasource’s built-in values.

See doc/examples/cloud-config-disk-setup.txt for information on disk_setup.

ZStack

ZStack platform provides a AWS Ec2 metadata service, but with different datasource identity. More information about
ZStack can be found at ZStack.

Discovery

To determine whether a vm running on ZStack platform, cloud-init checks DMI information by ‘dmidecode -s chassis-
asset-tag’, if the output ends with ‘.zstack.io’, it’s running on ZStack platform:

Metadata

Same as EC2, instance metadata can be queried at

GET http://169.254.169.254/2009-04-04/meta-data/
instance-id
local-hostname

Userdata

Same as EC2, instance userdata can be queried at

GET http://169.254.169.254/2009-04-04/user-data/
meta_data.json
user_data
password
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1.11.2 Creation

The datasource objects have a few touch points with cloud-init. If you are interested in adding a new datasource for
your cloud platform you will need to take care of the following items:

• Identify a mechanism for positive identification of the platform: It is good practice for a cloud platform to
positively identify itself to the guest. This allows the guest to make educated decisions based on the platform on
which it is running. On the x86 and arm64 architectures, many clouds identify themselves through DMI data.
For example, Oracle’s public cloud provides the string ‘OracleCloud.com’ in the DMI chassis-asset field.

cloud-init enabled images produce a log file with details about the platform. Reading through this log in /run/
cloud-init/ds-identify.log may provide the information needed to uniquely identify the platform.
If the log is not present, you can generate it by running from source ./tools/ds-identify or the installed
location /usr/lib/cloud-init/ds-identify.

The mechanism used to identify the platform will be required for the ds-identify and datasource module sections
below.

• Add datasource module ‘‘cloudinit/sources/DataSource<CloudPlatform>.py‘‘: It is suggested that you start
by copying one of the simpler datasources such as DataSourceHetzner.

• Add tests for datasource module: Add a new file with some tests for the module to cloudinit/sources/
test_<yourplatform>.py. For example see cloudinit/sources/tests/test_oracle.py

• Update ds-identify: In systemd systems, ds-identify is used to detect which datasource should be enabled or if
cloud-init should run at all. You’ll need to make changes to tools/ds-identify.

• Add tests for ds-identify: Add relevant tests in a new class to tests/unittests/test_ds_identify.
py. You can use TestOracle as an example.

• Add your datasource name to the builtin list of datasources: Add your datasource module name to the end
of the datasource_list entry in cloudinit/settings.py.

• Add your your cloud platform to apport collection prompts: Update the list of cloud platforms in
cloudinit/apport.py. This list will be provided to the user who invokes ubuntu-bug cloud-init.

• Enable datasource by default in ubuntu packaging branches: Ubuntu packaging branches contain a template
file debian/cloud-init.templates that ultimately sets the default datasource_list when installed via
package. This file needs updating when the commit gets into a package.

• Add documentation for your datasource: You should add a new file in doc/datasources/
<cloudplatform>.rst

1.11.3 API

The current interface that a datasource object must provide is the following:

# returns a mime multipart message that contains
# all the various fully-expanded components that
# were found from processing the raw user data string
# - when filtering only the mime messages targeting
# this instance id will be returned (or messages with
# no instance id)
def get_userdata(self, apply_filter=False)

# returns the raw userdata string (or none)
def get_userdata_raw(self)

# returns a integer (or none) which can be used to identify

(continues on next page)
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(continued from previous page)

# this instance in a group of instances which are typically
# created from a single command, thus allowing programmatic
# filtering on this launch index (or other selective actions)
@property
def launch_index(self)

# the data sources' config_obj is a cloud-config formatted
# object that came to it from ways other than cloud-config
# because cloud-config content would be handled elsewhere
def get_config_obj(self)

# returns a list of public SSH keys
def get_public_ssh_keys(self)

# translates a device 'short' name into the actual physical device
# fully qualified name (or none if said physical device is not attached
# or does not exist)
def device_name_to_device(self, name)

# gets the locale string this instance should be applying
# which typically used to adjust the instances locale settings files
def get_locale(self)

@property
def availability_zone(self)

# gets the instance id that was assigned to this instance by the
# cloud provider or when said instance id does not exist in the backing
# metadata this will return 'iid-datasource'
def get_instance_id(self)

# gets the fully qualified domain name that this host should be using
# when configuring network or hostname related settings, typically
# assigned either by the cloud provider or the user creating the vm
def get_hostname(self, fqdn=False)

def get_package_mirror_info(self)

1.12 Vendor Data

1.12.1 Overview

Vendordata is data provided by the entity that launches an instance (for example, the cloud provider). This data can be
used to customize the image to fit into the particular environment it is being run in.

Vendordata follows the same rules as user-data, with the following caveats:

1. Users have ultimate control over vendordata. They can disable its execution or disable handling of specific parts
of multipart input.

2. By default it only runs on first boot

3. Vendordata can be disabled by the user. If the use of vendordata is required for the instance to run, then
vendordata should not be used.

4. user supplied cloud-config is merged over cloud-config from vendordata.
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Users providing cloud-config data can use the ‘#cloud-config-jsonp’ method to more finely control their modifications
to the vendor supplied cloud-config. For example, if both vendor and user have provided ‘runcmd’ then the default
merge handler will cause the user’s runcmd to override the one provided by the vendor. To append to ‘runcmd’, the
user could better provide multipart input with a cloud-config-jsonp part like:

#cloud-config-jsonp
[{ "op": "add", "path": "/runcmd", "value": ["my", "command", "here"]}]

Further, we strongly advise vendors to not ‘be evil’. By evil, we mean any action that could compromise a system.
Since users trust you, please take care to make sure that any vendordata is safe, atomic, idempotent and does not put
your users at risk.

1.12.2 Input Formats

cloud-init will download and cache to filesystem any vendor-data that it finds. Vendordata is handled exactly like
user-data. That means that the vendor can supply multipart input and have those parts acted on in the same way as
user-data.

The only differences are:

• user-scripts are stored in a different location than user-scripts (to avoid namespace collision)

• user can disable part handlers by cloud-config settings. For example, to disable handling of ‘part-handlers’ in
vendor-data, the user could provide user-data like this:

#cloud-config
vendordata: {excluded: 'text/part-handler'}

1.12.3 Examples

There are examples in the examples subdirectory.

Additionally, the ‘tools’ directory contains ‘write-mime-multipart’, which can be used to easily generate mime-multi-
part files from a list of input files. That data can then be given to an instance.

See ‘write-mime-multipart –help’ for usage.

1.13 Network Configuration

• Default Behavior

• Disabling Network Configuration

• Fallback Networking

• Network Configuration Sources

• Network Configuration Outputs

• Network Output Policy

• Network Configuration Tools

• Examples
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1.13.1 Default Behavior

Cloud-init ‘s searches for network configuration in order of increasing precedence; each item overriding the previous.

Datasource

For example, OpenStack may provide network config in the MetaData Service.

System Config

A network: entry in /etc/cloud/cloud.cfg.d/* configuration files.

Kernel Command Line

ip= or network-config=<Base64 encoded YAML config string>

User-data cannot change an instance’s network configuration. In the absence of network configuration in any of the
above sources , Cloud-init will write out a network configuration that will issue a DHCP request on a “first” network
interface.

Note: The network-config value is expected to be a Base64 encoded YAML string in Networking Config Version 1 or
Networking Config Version 2 format. Optionally it can be compressed with gzip prior to Base64 encoding.

1.13.2 Disabling Network Configuration

Users may disable Cloud-init ‘s network configuration capability and rely on other methods, such as embedded con-
figuration or other customizations.

Cloud-init supports the following methods for disabling cloud-init.

Kernel Command Line

Cloud-init will check additionally check for the parameter network-config=disabledwhich will automatically
disable any network configuration.

Example disabling kernel command line entry:

network-config=disabled

cloud config

In the combined cloud-init configuration dictionary, merged from /etc/cloud/cloud.cfg and /etc/cloud/
cloud.cfg.d/*:

network:
config: disabled

If Cloud-init ‘s networking config has not been disabled, and no other network information is found, then it will
proceed to generate a fallback networking configuration.

1.13.3 Fallback Network Configuration

Cloud-init will attempt to determine which of any attached network devices is most likely to have a connection and
then generate a network configuration to issue a DHCP request on that interface.

Cloud-init runs during early boot and does not expect composed network devices (such as Bridges) to be available.
Cloud-init does not consider the following interface devices as likely ‘first’ network interfaces for fallback configura-
tion; they are filtered out from being selected.

130 Chapter 1. Getting help

https://launchpad.net/cloud-init
https://launchpad.net/cloud-init
https://launchpad.net/cloud-init
https://launchpad.net/cloud-init
https://launchpad.net/cloud-init
https://launchpad.net/cloud-init
https://launchpad.net/cloud-init
https://launchpad.net/cloud-init
https://launchpad.net/cloud-init


cloud-init, Release 20.2

• loopback: name=lo

• Virtual Ethernet: name=veth*
• Software Bridges: type=bridge

• Software VLANs: type=vlan

Cloud-init will prefer network interfaces that indicate they are connected via the Linux carrier flag being set. If no
interfaces are marked connected, then all unfiltered interfaces are potential connections.

Of the potential interfaces, Cloud-init will attempt to pick the “right” interface given the information it has available.

Finally after selecting the “right” interface, a configuration is generated and applied to the system.

1.13.4 Network Configuration Sources

Cloud-init accepts a number of different network configuration formats in support of different cloud substrates. The
Datasource for these clouds in Cloud-init will detect and consume Datasource-specific network configuration formats
for use when writing an instance’s network configuration.

The following Datasources optionally provide network configuration:

• Config Drive

– OpenStack Metadata Service Network

– Network Configuration ENI (Legacy)

• Digital Ocean

– DigitalOcean JSON metadata

• NoCloud

– Networking Config Version 1

– Networking Config Version 2

– Network Configuration ENI (Legacy)

• OpenNebula

– Network Configuration ENI (Legacy)

• OpenStack

– Network Configuration ENI (Legacy)

– OpenStack Metadata Service Network

• SmartOS Datasource

– SmartOS JSON Metadata

For more information on network configuration formats

Network Configuration ENI (Legacy)

Cloud-init supports reading and writing network config in the ENI format which is consumed by the ifupdown tool
to parse and apply network configuration.

As an input format this is legacy. In cases where ENI format is available and another format is also available, it will
prefer to use the other format. This can happen in either NoCloud or OpenStack datasources.
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Please reference existing documentation for the /etc/network/interfaces(5) format.

Networking Config Version 1

This network configuration format lets users customize their instance’s networking interfaces by assigning subnet
configuration, virtual device creation (bonds, bridges, vlans) routes and DNS configuration.

Required elements of a Network Config Version 1 are config and version.

Cloud-init will read this format from system config. For example the following could be present in /etc/cloud/
cloud.cfg.d/custom-networking.cfg:

network:
version: 1
config:
- type: physical
name: eth0
subnets:
- type: dhcp

The NoCloud datasource can also provide cloud-init networking configuration in this Format.

Configuration Types

Within the network config portion, users include a list of configuration types. The current list of support type
values are as follows:

• Physical (physical)

• Bond (bond)

• Bridge (bridge)

• VLAN (vlan)

• Nameserver (nameserver)

• Route (route)

Physical, Bond, Bridge and VLAN types may also include IP configuration under the key subnets.

• Subnet/IP (subnets)

Physical

The physical type configuration represents a “physical” network device, typically Ethernet-based. At least one
of of these entries is required for external network connectivity. Type physical requires only one key: name. A
physical device may contain some or all of the following keys:

name: <desired device name>

A devices name must be less than 15 characters. Names exceeding the maximum will be truncated. This is a limitation
of the Linux kernel network-device structure.

mac_address: <MAC Address>

The MAC Address is a device unique identifier that most Ethernet-based network devices possess. Specifying a MAC
Address is optional.
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Note: Cloud-init will handle the persistent mapping between a device’s name and the mac_address.

mtu: <MTU SizeBytes>

The MTU key represents a device’s Maximum Transmission Unit, the largest size packet or frame, specified in octets
(eight-bit bytes), that can be sent in a packet- or frame-based network. Specifying mtu is optional.

Note: The possible supported values of a device’s MTU is not available at configuration time. It’s possible to specify
a value too large or to small for a device and may be ignored by the device.

Physical Example:

network:
version: 1
config:
# Simple network adapter
- type: physical

name: interface0
mac_address: 00:11:22:33:44:55

# Second nic with Jumbo frames
- type: physical

name: jumbo0
mac_address: aa:11:22:33:44:55
mtu: 9000

# 10G pair
- type: physical

name: gbe0
mac_address: cd:11:22:33:44:00

- type: physical
name: gbe1
mac_address: cd:11:22:33:44:02

Bond

A bond type will configure a Linux software Bond with one or more network devices. A bond type requires the
following keys:

name: <desired device name>

A devices name must be less than 15 characters. Names exceeding the maximum will be truncated. This is a limitation
of the Linux kernel network-device structure.

mac_address: <MAC Address>

When specifying MAC Address on a bond this value will be assigned to the bond device and may be different than the
MAC address of any of the underlying bond interfaces. Specifying a MAC Address is optional. If mac_address is
not present, then the bond will use one of the MAC Address values from one of the bond interfaces.

bond_interfaces: <List of network device names>

The bond_interfaces key accepts a list of network device name values from the configuration. This list may be
empty.

mtu: <MTU SizeBytes>
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The MTU key represents a device’s Maximum Transmission Unit, the largest size packet or frame, specified in octets
(eight-bit bytes), that can be sent in a packet- or frame-based network. Specifying mtu is optional.

Note: The possible supported values of a device’s MTU is not available at configuration time. It’s possible to specify
a value too large or to small for a device and may be ignored by the device.

params: <Dictionary of key: value bonding parameter pairs>

The params key in a bond holds a dictionary of bonding parameters. This dictionary may be empty. For more details
on what the various bonding parameters mean please read the Linux Kernel Bonding.txt.

Valid params keys are:

• active_slave: Set bond attribute

• ad_actor_key: Set bond attribute

• ad_actor_sys_prio: Set bond attribute

• ad_actor_system: Set bond attribute

• ad_aggregator: Set bond attribute

• ad_num_ports: Set bond attribute

• ad_partner_key: Set bond attribute

• ad_partner_mac: Set bond attribute

• ad_select: Set bond attribute

• ad_user_port_key: Set bond attribute

• all_slaves_active: Set bond attribute

• arp_all_targets: Set bond attribute

• arp_interval: Set bond attribute

• arp_ip_target: Set bond attribute

• arp_validate: Set bond attribute

• downdelay: Set bond attribute

• fail_over_mac: Set bond attribute

• lacp_rate: Set bond attribute

• lp_interval: Set bond attribute

• miimon: Set bond attribute

• mii_status: Set bond attribute

• min_links: Set bond attribute

• mode: Set bond attribute

• num_grat_arp: Set bond attribute

• num_unsol_na: Set bond attribute

• packets_per_slave: Set bond attribute

• primary: Set bond attribute

• primary_reselect: Set bond attribute
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• queue_id: Set bond attribute

• resend_igmp: Set bond attribute

• slaves: Set bond attribute

• tlb_dynamic_lb: Set bond attribute

• updelay: Set bond attribute

• use_carrier: Set bond attribute

• xmit_hash_policy: Set bond attribute

Bond Example:

network:
version: 1
config:
# Simple network adapter
- type: physical

name: interface0
mac_address: 00:11:22:33:44:55

# 10G pair
- type: physical

name: gbe0
mac_address: cd:11:22:33:44:00

- type: physical
name: gbe1
mac_address: cd:11:22:33:44:02

- type: bond
name: bond0
bond_interfaces:

- gbe0
- gbe1

params:
bond-mode: active-backup

Bridge

Type bridge requires the following keys:

• name: Set the name of the bridge.

• bridge_interfaces: Specify the ports of a bridge via their name. This list may be empty.

• params: A list of bridge params. For more details, please read the bridge-utils-interfaces manpage.

Valid keys are:

• bridge_ageing: Set the bridge’s ageing value.

• bridge_bridgeprio: Set the bridge device network priority.

• bridge_fd: Set the bridge’s forward delay.

• bridge_hello: Set the bridge’s hello value.

• bridge_hw: Set the bridge’s MAC address.

• bridge_maxage: Set the bridge’s maxage value.

• bridge_maxwait: Set how long network scripts should wait for the bridge to be up.
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• bridge_pathcost: Set the cost of a specific port on the bridge.

• bridge_portprio: Set the priority of a specific port on the bridge.

• bridge_ports: List of devices that are part of the bridge.

• bridge_stp: Set spanning tree protocol on or off.

• bridge_waitport: Set amount of time in seconds to wait on specific ports to become available.

Bridge Example:

network:
version: 1
config:
# Simple network adapter
- type: physical

name: interface0
mac_address: 00:11:22:33:44:55

# Second nic with Jumbo frames
- type: physical

name: jumbo0
mac_address: aa:11:22:33:44:55
mtu: 9000

- type: bridge
name: br0
bridge_interfaces:

- jumbo0
params:
bridge_ageing: 250
bridge_bridgeprio: 22
bridge_fd: 1
bridge_hello: 1
bridge_maxage: 10
bridge_maxwait: 0
bridge_pathcost:
- jumbo0 75

bridge_pathprio:
- jumbo0 28

bridge_stp: 'off'
bridge_maxwait:
- jumbo0 0

VLAN

Type vlan requires the following keys:

• name: Set the name of the VLAN

• vlan_link: Specify the underlying link via its name.

• vlan_id: Specify the VLAN numeric id.

The following optional keys are supported:

mtu: <MTU SizeBytes>

The MTU key represents a device’s Maximum Transmission Unit, the largest size packet or frame, specified in octets
(eight-bit bytes), that can be sent in a packet- or frame-based network. Specifying mtu is optional.
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Note: The possible supported values of a device’s MTU is not available at configuration time. It’s possible to specify
a value too large or to small for a device and may be ignored by the device.

VLAN Example:

network:
version: 1
config:
# Physical interfaces.
- type: physical

name: eth0
mac_address: "c0:d6:9f:2c:e8:80"

# VLAN interface.
- type: vlan

name: eth0.101
vlan_link: eth0
vlan_id: 101
mtu: 1500

Nameserver

Users can specify a nameserver type. Nameserver dictionaries include the following keys:

• address: List of IPv4 or IPv6 address of nameservers.

• search: List of of hostnames to include in the resolv.conf search path.

Nameserver Example:

network:
version: 1
config:
- type: physical

name: interface0
mac_address: 00:11:22:33:44:55
subnets:

- type: static
address: 192.168.23.14/27
gateway: 192.168.23.1

- type: nameserver:
address:

- 192.168.23.2
- 8.8.8.8

search:
- exemplary

Route

Users can include static routing information as well. A route dictionary has the following keys:

• destination: IPv4 network address with CIDR netmask notation.

• gateway: IPv4 gateway address with CIDR netmask notation.

• metric: Integer which sets the network metric value for this route.
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Route Example:

network:
version: 1
config:
- type: physical

name: interface0
mac_address: 00:11:22:33:44:55
subnets:

- type: static
address: 192.168.23.14/24
gateway: 192.168.23.1

- type: route
destination: 192.168.24.0/24
gateway: 192.168.24.1
metric: 3

Subnet/IP

For any network device (one of the Config Types) users can define a list of subnets which contain ip configu-
ration dictionaries. Multiple subnet entries will create interface alias allowing a single interface to use different ip
configurations.

Valid keys for subnets include the following:

• type: Specify the subnet type.

• control: Specify manual, auto or hotplug. Indicates how the interface will be handled during boot.

• address: IPv4 or IPv6 address. It may include CIDR netmask notation.

• netmask: IPv4 subnet mask in dotted format or CIDR notation.

• gateway: IPv4 address of the default gateway for this subnet.

• dns_nameservers: Specify a list of IPv4 dns server IPs to end up in resolv.conf.

• dns_search: Specify a list of search paths to be included in resolv.conf.

• routes: Specify a list of routes for a given interface

Subnet types are one of the following:

• dhcp4: Configure this interface with IPv4 dhcp.

• dhcp: Alias for dhcp4

• dhcp6: Configure this interface with IPv6 dhcp.

• static: Configure this interface with a static IPv4.

• static6: Configure this interface with a static IPv6 .

When making use of dhcp types, no additional configuration is needed in the subnet dictionary.

Subnet DHCP Example:

network:
version: 1
config:
- type: physical

name: interface0

(continues on next page)
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(continued from previous page)

mac_address: 00:11:22:33:44:55
subnets:

- type: dhcp

Subnet Static Example:

network:
version: 1
config:
- type: physical

name: interface0
mac_address: 00:11:22:33:44:55
subnets:

- type: static
address: 192.168.23.14/27
gateway: 192.168.23.1
dns_nameservers:
- 192.168.23.2
- 8.8.8.8

dns_search:
- exemplary.maas

The following will result in an interface0 using DHCP and interface0:1 using the static subnet configuration.

Multiple subnet Example:

network:
version: 1
config:
- type: physical

name: interface0
mac_address: 00:11:22:33:44:55
subnets:

- type: dhcp
- type: static
address: 192.168.23.14/27
gateway: 192.168.23.1
dns_nameservers:
- 192.168.23.2
- 8.8.8.8

dns_search:
- exemplary

Subnet with routes Example:

network:
version: 1
config:
- type: physical

name: interface0
mac_address: 00:11:22:33:44:55
subnets:

- type: dhcp
- type: static
address: 10.184.225.122
netmask: 255.255.255.252
routes:

(continues on next page)
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- gateway: 10.184.225.121
netmask: 255.240.0.0
network: 10.176.0.0

- gateway: 10.184.225.121
netmask: 255.240.0.0
network: 10.208.0.0

Multi-layered configurations

Complex networking sometimes uses layers of configuration. The syntax allows users to build those layers one at a
time. All of the virtual network devices supported allow specifying an underlying device by their name value.

Bonded VLAN Example:

network:
version: 1
config:
# 10G pair
- type: physical

name: gbe0
mac_address: cd:11:22:33:44:00

- type: physical
name: gbe1
mac_address: cd:11:22:33:44:02

# Bond.
- type: bond

name: bond0
bond_interfaces:

- gbe0
- gbe1

params:
bond-mode: 802.3ad
bond-lacp-rate: fast

# A Bond VLAN.
- type: vlan

name: bond0.200
vlan_link: bond0
vlan_id: 200
subnets:

- type: dhcp4

More Examples

Some more examples to explore the various options available.

Multiple VLAN example:

network:
version: 1
config:
- id: eth0
mac_address: d4:be:d9:a8:49:13
mtu: 1500
name: eth0

(continues on next page)
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subnets:
- address: 10.245.168.16/21

dns_nameservers:
- 10.245.168.2
gateway: 10.245.168.1
type: static

type: physical
- id: eth1
mac_address: d4:be:d9:a8:49:15
mtu: 1500
name: eth1
subnets:
- address: 10.245.188.2/24

dns_nameservers: []
type: static

type: physical
- id: eth1.2667
mtu: 1500
name: eth1.2667
subnets:
- address: 10.245.184.2/24

dns_nameservers: []
type: static

type: vlan
vlan_id: 2667
vlan_link: eth1

- id: eth1.2668
mtu: 1500
name: eth1.2668
subnets:
- address: 10.245.185.1/24

dns_nameservers: []
type: static

type: vlan
vlan_id: 2668
vlan_link: eth1

- id: eth1.2669
mtu: 1500
name: eth1.2669
subnets:
- address: 10.245.186.1/24

dns_nameservers: []
type: static

type: vlan
vlan_id: 2669
vlan_link: eth1

- id: eth1.2670
mtu: 1500
name: eth1.2670
subnets:
- address: 10.245.187.2/24

dns_nameservers: []
type: static

type: vlan
vlan_id: 2670
vlan_link: eth1

- address: 10.245.168.2
(continues on next page)

1.13. Network Configuration 141



cloud-init, Release 20.2

(continued from previous page)

search:
- dellstack
type: nameserver

Networking Config Version 2

Cloud-init’s support for Version 2 network config is a subset of the version 2 format defined for the netplan tool.
Cloud-init supports both reading and writing of Version 2; the latter support requires a distro with netplan present.

The network key has at least two required elements. First it must include version: 2 and one or more of
possible device types..

Cloud-init will read this format from system config. For example the following could be present in /etc/cloud/
cloud.cfg.d/custom-networking.cfg:

network:
version: 2
ethernets: []

It may also be provided in other locations including the NoCloud, see Default Behavior for other places.

Supported device types values are as follows:

• Ethernets (ethernets)

• Bonds (bonds)

• Bridges (bridges)

• VLANs (vlans)

Each type block contains device definitions as a map where the keys (called “configuration IDs”). Each entry under
the types may include IP and/or device configuration.

Cloud-init does not current support wifis type that is present in native netplan.

Device configuration IDs

The key names below the per-device-type definition maps (like ethernets:) are called “ID”s. They must be unique
throughout the entire set of configuration files. Their primary purpose is to serve as anchor names for composite
devices, for example to enumerate the members of a bridge that is currently being defined.

There are two physically/structurally different classes of device definitions, and the ID field has a different interpreta-
tion for each:

Physical devices

: (Examples: ethernet, wifi) These can dynamically come and go between reboots and even during runtime (hot-
plugging). In the generic case, they can be selected by match: rules on desired properties, such as name/name
pattern, MAC address, driver, or device paths. In general these will match any number of devices (unless they
refer to properties which are unique such as the full path or MAC address), so without further knowledge about
the hardware these will always be considered as a group.

It is valid to specify no match rules at all, in which case the ID field is simply the interface name to be matched.
This is mostly useful if you want to keep simple cases simple, and it’s how network device configuration has
been done for a long time.
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If there are match: rules, then the ID field is a purely opaque name which is only being used for references
from definitions of compound devices in the config.

Virtual devices

: (Examples: veth, bridge, bond) These are fully under the control of the config file(s) and the network stack. I.
e. these devices are being created instead of matched. Thus match: and set-name: are not applicable for
these, and the ID field is the name of the created virtual device.

Common properties for physical device types

match: <(mapping)>

This selects a subset of available physical devices by various hardware properties. The following configuration will
then apply to all matching devices, as soon as they appear. All specified properties must match. The following
properties for creating matches are supported:

name: <(scalar)>

Current interface name. Globs are supported, and the primary use case for matching on names, as selecting one fixed
name can be more easily achieved with having no match: at all and just using the ID (see above). Note that currently
only networkd supports globbing, NetworkManager does not.

macaddress: <(scalar)>

Device’s MAC address in the form “XX:XX:XX:XX:XX:XX”. Globs are not allowed.

driver: <(scalar)>

Kernel driver name, corresponding to the DRIVER udev property. Globs are supported. Matching on driver is only
supported with networkd.

Examples:

# all cards on second PCI bus
match:

name: enp2*

# fixed MAC address
match:

macaddress: 11:22:33:AA:BB:FF

# first card of driver ``ixgbe``
match:

driver: ixgbe
name: en*s0

set-name: <(scalar)>

When matching on unique properties such as path or MAC, or with additional assumptions such as “there will only
ever be one wifi device”, match rules can be written so that they only match one device. Then this property can be
used to give that device a more specific/desirable/nicer name than the default from udev’s ifnames. Any additional
device that satisfies the match rules will then fail to get renamed and keep the original kernel name (and dmesg will
show an error).

wakeonlan: <(bool)>

Enable wake on LAN. Off by default.
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Common properties for all device types

renderer: <(scalar)>

Use the given networking backend for this definition. Currently supported are networkd and NetworkManager.
This property can be specified globally in networks:, for a device type (in e. g. ethernets:) or for a particular
device definition. Default is networkd.

Note: Cloud-init only supports networkd backend if rendering version2 config to the instance.

dhcp4: <(bool)>

Enable DHCP for IPv4. Off by default.

dhcp6: <(bool)>

Enable DHCP for IPv6. Off by default.

addresses: <(sequence of scalars)>

Add static addresses to the interface in addition to the ones received through DHCP or RA. Each sequence entry
is in CIDR notation, i. e. of the form addr/prefixlen . addr is an IPv4 or IPv6 address as recognized by
inet_pton``(3) and ``prefixlen the number of bits of the subnet.

Example: addresses: [192.168.14.2/24, 2001:1::1/64]

gateway4: or gateway6: <(scalar)>

Set default gateway for IPv4/6, for manual address configuration. This requires setting addresses too. Gateway
IPs must be in a form recognized by inet_pton(3)

Example for IPv4: gateway4: 172.16.0.1 Example for IPv6: gateway6: 2001:4::1

mtu: <MTU SizeBytes>

The MTU key represents a device’s Maximum Transmission Unit, the largest size packet or frame, specified in octets
(eight-bit bytes), that can be sent in a packet- or frame-based network. Specifying mtu is optional.

nameservers: <(mapping)>

Set DNS servers and search domains, for manual address configuration. There are two supported fields: addresses:
is a list of IPv4 or IPv6 addresses similar to gateway*, and search: is a list of search domains.

Example:

nameservers:
search: [lab, home]
addresses: [8.8.8.8, FEDC::1]

routes: <(sequence of mapping)>

Add device specific routes. Each mapping includes a to, via key with an IPv4 or IPv6 address as value. metric is
an optional value.

Example:

routes:
- to: 0.0.0.0/0
via: 10.23.2.1
metric: 3
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Ethernets

Ethernet device definitions do not support any specific properties beyond the common ones described above.

Bonds

interfaces <(sequence of scalars)>

All devices matching this ID list will be added to the bond.

Example:

ethernets:
switchports:
match: {name: "enp2*"}

[...]
bonds:

bond0:
interfaces: [switchports]

parameters: <(mapping)>

Customization parameters for special bonding options. Time values are specified in seconds unless otherwise specified.

mode: <(scalar)>

Set the bonding mode used for the interfaces. The default is balance-rr (round robin). Possible val-
ues are balance-rr, active-backup, balance-xor, broadcast, 802.3ad, balance-tlb, and
balance-alb.

lacp-rate: <(scalar)>

Set the rate at which LACPDUs are transmitted. This is only useful in 802.3ad mode. Possible values are slow (30
seconds, default), and fast (every second).

mii-monitor-interval: <(scalar)>

Specifies the interval for MII monitoring (verifying if an interface of the bond has carrier). The default is 0; which
disables MII monitoring.

min-links: <(scalar)>

The minimum number of links up in a bond to consider the bond interface to be up.

transmit-hash-policy: <(scalar)>

Specifies the transmit hash policy for the selection of slaves. This is only useful in balance-xor, 802.3ad and balance-tlb
modes. Possible values are layer2, layer3+4, layer2+3, encap2+3, and encap3+4.

ad-select: <(scalar)>

Set the aggregation selection mode. Possible values are stable, bandwidth, and count. This option is only used
in 802.3ad mode.

all-slaves-active: <(bool)>

If the bond should drop duplicate frames received on inactive ports, set this option to false. If they should be
delivered, set this option to true. The default value is false, and is the desirable behavior in most situations.

arp-interval: <(scalar)>

Set the interval value for how frequently ARP link monitoring should happen. The default value is 0, which disables
ARP monitoring.
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arp-ip-targets: <(sequence of scalars)>

IPs of other hosts on the link which should be sent ARP requests in order to validate that a slave is up. This option is
only used when arp-interval is set to a value other than 0. At least one IP address must be given for ARP link
monitoring to function. Only IPv4 addresses are supported. You can specify up to 16 IP addresses. The default value
is an empty list.

arp-validate: <(scalar)>

Configure how ARP replies are to be validated when using ARP link monitoring. Possible values are none, active,
backup, and all.

arp-all-targets: <(scalar)>

Specify whether to use any ARP IP target being up as sufficient for a slave to be considered up; or if all the targets
must be up. This is only used for active-backup mode when arp-validate is enabled. Possible values are
any and all.

up-delay: <(scalar)>

Specify the delay before enabling a link once the link is physically up. The default value is 0.

down-delay: <(scalar)>

Specify the delay before disabling a link once the link has been lost. The default value is 0.

fail-over-mac-policy: <(scalar)>

Set whether to set all slaves to the same MAC address when adding them to the bond, or how else the system should
handle MAC addresses. The possible values are none, active, and follow.

gratuitious-arp: <(scalar)>

Specify how many ARP packets to send after failover. Once a link is up on a new slave, a notification is sent and
possibly repeated if this value is set to a number greater than 1. The default value is 1 and valid values are between 1
and 255. This only affects active-backup mode.

packets-per-slave: <(scalar)>

In balance-rr mode, specifies the number of packets to transmit on a slave before switching to the next. When
this value is set to 0, slaves are chosen at random. Allowable values are between 0 and 65535. The default value is
1. This setting is only used in balance-rr mode.

primary-reselect-policy: <(scalar)>

Set the reselection policy for the primary slave. On failure of the active slave, the system will use this policy to decide
how the new active slave will be chosen and how recovery will be handled. The possible values are always, better,
and failure.

learn-packet-interval: <(scalar)>

Specify the interval between sending learning packets to each slave. The value range is between 1 and 0x7fffffff.
The default value is 1. This option only affects balance-tlb and balance-alb modes.

Bridges

interfaces: <(sequence of scalars)>

All devices matching this ID list will be added to the bridge.

Example:
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ethernets:
switchports:
match: {name: "enp2*"}

[...]
bridges:
br0:
interfaces: [switchports]

parameters: <(mapping)>

Customization parameters for special bridging options. Time values are specified in seconds unless otherwise speci-
fied.

ageing-time: <(scalar)>

Set the period of time to keep a MAC address in the forwarding database after a packet is received.

priority: <(scalar)>

Set the priority value for the bridge. This value should be an number between 0 and 65535. Lower values mean
higher priority. The bridge with the higher priority will be elected as the root bridge.

forward-delay: <(scalar)>

Specify the period of time the bridge will remain in Listening and Learning states before getting to the Forwarding
state. This value should be set in seconds for the systemd backend, and in milliseconds for the NetworkManager
backend.

hello-time: <(scalar)>

Specify the interval between two hello packets being sent out from the root and designated bridges. Hello packets
communicate information about the network topology.

max-age: <(scalar)>

Set the maximum age of a hello packet. If the last hello packet is older than that value, the bridge will attempt to
become the root bridge.

path-cost: <(scalar)>

Set the cost of a path on the bridge. Faster interfaces should have a lower cost. This allows a finer control on the
network topology so that the fastest paths are available whenever possible.

stp: <(bool)>

Define whether the bridge should use Spanning Tree Protocol. The default value is “true”, which means that Spanning
Tree should be used.

VLANs

id: <(scalar)>

VLAN ID, a number between 0 and 4094.

link: <(scalar)>

ID of the underlying device definition on which this VLAN gets created.

Example:
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ethernets:
eno1: {...}

vlans:
en-intra:
id: 1
link: eno1
dhcp4: yes

en-vpn:
id: 2
link: eno1
address: ...

Examples

Configure an ethernet device with networkd, identified by its name, and enable DHCP:

network:
version: 2
ethernets:
eno1:

dhcp4: true

This is a complex example which shows most available features:

network:
version: 2
ethernets:
# opaque ID for physical interfaces, only referred to by other stanzas
id0:

match:
macaddress: 00:11:22:33:44:55

wakeonlan: true
dhcp4: true
addresses:
- 192.168.14.2/24
- 2001:1::1/64

gateway4: 192.168.14.1
gateway6: 2001:1::2
nameservers:

search: [foo.local, bar.local]
addresses: [8.8.8.8]

lom:
match:
driver: ixgbe

# you are responsible for setting tight enough match rules
# that only match one device if you use set-name
set-name: lom1
dhcp6: true

switchports:
# all cards on second PCI bus; unconfigured by themselves, will be added
# to br0 below
match:

name: enp2*
mtu: 1280

bonds:
(continues on next page)
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(continued from previous page)

bond0:
interfaces: [id0, lom]

bridges:
# the key name is the name for virtual (created) interfaces; no match: and
# set-name: allowed
br0:

# IDs of the components; switchports expands into multiple interfaces
interfaces: [wlp1s0, switchports]
dhcp4: true

vlans:
en-intra:

id: 1
link: id0
dhcp4: yes

# static routes
routes:
- to: 0.0.0.0/0

via: 11.0.0.1
metric: 3

1.13.5 Network Configuration Outputs

Cloud-init converts various forms of user supplied or automatically generated configuration into an internal network
configuration state. From this state Cloud-init delegates rendering of the configuration to Distro supported formats.
The following renderers are supported in cloud-init:

• ENI

/etc/network/interfaces or ENI is supported by the ifupdown package found in Ubuntu and Debian.

• Netplan

Introduced in Ubuntu 16.10 (Yakkety Yak), netplan has been the default network configuration tool in Ubuntu since
17.10 (Artful Aardvark). netplan consumes Networking Config Version 2 input and renders network configuration for
supported backends such as systemd-networkd and NetworkManager.

• Sysconfig

Sysconfig format is used by RHEL, CentOS, Fedora and other derivatives.

1.13.6 Network Output Policy

The default policy for selecting a network renderer in order of preference is as follows:

• ENI

• Sysconfig

• Netplan

When applying the policy, Cloud-init checks if the current instance has the correct binaries and paths to support the
renderer. The first renderer that can be used is selected. Users may override the network renderer policy by supplying
an updated configuration in cloud-config.

system_info:
network:
renderers: ['netplan', 'eni', 'sysconfig', 'freebsd', 'netbsd', 'openbsd']
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1.13.7 Network Configuration Tools

Cloud-init contains one tool used to test input/output conversion between formats. The tools/net-convert.py
in the Cloud-init source repository is helpful for examining expected output for a given input format.

CLI Interface :

% tools/net-convert.py --help
usage: net-convert.py [-h] --network-data PATH --kind

{eni,network_data.json,yaml} -d PATH [-m name,mac]
--output-kind {eni,netplan,sysconfig}

optional arguments:
-h, --help show this help message and exit
--network-data PATH, -p PATH
--kind {eni,network_data.json,yaml}, -k {eni,network_data.json,yaml}
-d PATH, --directory PATH

directory to place output in
-m name,mac, --mac name,mac

interface name to mac mapping
--output-kind {eni,netplan,sysconfig}, -ok {eni,netplan,sysconfig}

Example output converting V2 to sysconfig:

% tools/net-convert.py --network-data v2.yaml --kind yaml \
--output-kind sysconfig -d target

% cat target/etc/sysconfig/network-scripts/ifcfg-eth*
# Created by cloud-init on instance boot automatically, do not edit.
#
BOOTPROTO=static
DEVICE=eth7
IPADDR=192.168.1.5/255.255.255.0
NM_CONTROLLED=no
ONBOOT=yes
TYPE=Ethernet
USERCTL=no
# Created by cloud-init on instance boot automatically, do not edit.
#
BOOTPROTO=dhcp
DEVICE=eth9
NM_CONTROLLED=no
ONBOOT=yes
TYPE=Ethernet
USERCTL=no

1.14 Hacking on cloud-init

This document describes how to contribute changes to cloud-init. It assumes you have a GitHub account, and refers to
your GitHub user as GH_USER throughout.

1.14.1 Do these things once

• To contribute, you must sign the Canonical contributor license agreement
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– If you have already signed it as an individual, your Launchpad user will be listed in the contributor-
agreement-canonical group. (Unfortunately there is no easy way to check if an organization or company
you are doing work for has signed.)

– When signing it:

* ensure that you fill in the GitHub username field.

* when prompted for ‘Project contact’ or ‘Canonical Project Manager’, enter ‘Josh Powers’.

– If your company has signed the CLA for you, please contact us to help in verifying which Launch-
pad/GitHub accounts are associated with the company.

– For any questions or help with the process, please email Josh Powers with the subject, “Cloud-Init CLA”

– You also may contact user powersj in the #cloud-init channel on the Freenode IRC network.

• Configure git with your email and name for commit messages.

Your name will appear in commit messages and will also be used in changelogs or release notes. Give yourself
credit!:

git config user.name "Your Name"
git config user.email "Your Email"

• Sign into your GitHub account

• Fork the upstream repository on Github and clicking on the Fork button

• Create a new remote pointing to your personal GitHub repository.

git clone git://github.com/canonical/cloud-init
cd cloud-init
git remote add GH_USER git@github.com:GH_USER/cloud-init.git
git push GH_USER master

• Read through the cloud-init Code Review Process, so you understand how your changes will end up in cloud-
init’s codebase.

Transferring CLA Signatures from Launchpad to Github

For existing contributors who have signed the agreement in Launchpad before the Github username field was included,
we need to verify the link between your Launchpad account and your GitHub account. To enable us to do this, we ask
that you create a branch with both your Launchpad and GitHub usernames against both the Launchpad and GitHub
cloud-init repositories. We’ve added a tool (tools/migrate-lp-user-to-github) to the cloud-init repository
to handle this migration as automatically as possible.

The cloud-init team will review the two merge proposals and verify that the CLA has been signed for the Launchpad
user and record the associated GitHub account.

1.14.2 Do these things for each feature or bug

• Create a new topic branch for your work:

git checkout -b my-topic-branch

• Make and commit your changes (note, you can make multiple commits, fixes, more commits.):
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git commit

• Run unit tests and lint/formatting checks with tox:

tox

• Push your changes to your personal GitHub repository:

git push -u GH_USER my-topic-branch

• Use your browser to create a merge request:

– Open the branch on GitHub

* You can see a web view of your repository and navigate to the branch at:

https://github.com/GH_USER/cloud-init/tree/my-topic-branch

– Click ‘Pull Request‘

– Fill out the pull request title, summarizing the change and a longer message indicating important details
about the changes included, like

Activate the frobnicator.

The frobnicator was previously inactive and now runs by default.
This may save the world some day. Then, list the bugs you fixed
as footers with syntax as shown here.

The commit message should be one summary line of less than
74 characters followed by a blank line, and then one or more
paragraphs describing the change and why it was needed.

This is the message that will be used on the commit when it
is sqaushed and merged into trunk.

LP: #1

Note that the project continues to use LP: #NNNNN format for closing launchpad bugs rather than GitHub
Issues.

– Click ‘Create Pull Request‘

Then, someone in the Ubuntu Server team will review your changes and follow up in the pull request. Look at the
Code Review Process doc to understand the following steps.

Feel free to ping and/or join #cloud-init on freenode irc if you have any questions.

1.14.3 Design

This section captures design decisions that are helpful to know when hacking on cloud-init.

Cloud Config Modules

• Any new modules should use underscores in any new config options and not hyphens (e.g. new_option and not
new-option).
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Unit Testing

cloud-init uses pytest to run its tests, and has tests written both as unittest.TestCase sub-classes and as un-
subclassed pytest tests. The following guidelines should be followed:

• For ease of organisation and greater accessibility for developers not familiar with pytest, all cloud-init unit tests
must be contained within test classes

– Put another way, module-level test functions should not be used

• pytest test classes should use pytest fixtures to share functionality instead of inheritance

• As all tests are contained within classes, it is acceptable to mix TestCase test classes and pytest test classes
within the same test file

– These can be easily distinguished by their definition: pytest classes will not use inheritance at all (e.g.
TestGetPackageMirrorInfo), whereas TestCase classes will subclass (indirectly) from TestCase (e.g.
TestPrependBaseCommands)

• pytest tests should use bare assert statements, to take advantage of pytest’s assertion introspection

– For == and other commutative assertions, the expected value should be placed before the value under test:
assert expected_value == function_under_test()

• As we still support Ubuntu 16.04 (Xenial Xerus), we can only use pytest features that are available in v2.8.7.
This is an inexhaustive list of ways in which this may catch you out:

– Support for using yield in pytest.fixture functions was only introduced in pytest 3.0. Such func-
tions must instead use the pytest.yield_fixture decorator.

– Only the following built-in fixtures are available1:

* cache

* capsys

* capfd

* record_xml_property

* monkeypatch

* pytestconfig

* recwarn

* tmpdir_factory

* tmpdir

• Variables/parameter names for Mock or MagicMock instances should start with m_ to clearly distinguish them
from non-mock variables

– For example, m_readurl (which would be a mock for readurl)

Type Annotations

The cloud-init codebase uses Python’s annotation support for storing type annotations in the style specified by PEP-
484. Their use in the codebase is encouraged but with one important caveat: types from the typing module cannot
be used.

1 This list of fixtures (with markup) can be reproduced by running:

py.test-3 --fixtures -q | grep "^[^ ]" | grep -v no | sed 's/.*/* ``\0``/'

in a xenial lxd container with python3-pytest installed.
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cloud-init still supports Python 3.4, which doesn’t have the typing module in the stdlib. This means that the use
of any types from the typing module in the codebase would require installation of an additional Python module
on platforms using Python 3.4. As such platforms are generally in maintenance mode, the introduction of a new
dependency may act as a break in compatibility in practical terms.

Similarly, only function annotations are appropriate for use, as the variable annotations specified in PEP-526 were
introduced in Python 3.6.

1.15 Code Review Process

In order to manage incoming pull requests effectively, and provide timely feedback and/or acceptance this document
serves as a guideline for the review process and outlines the expectations for those submitting code to the project as
well as those reviewing the code. Code is reviewed for acceptance by at least one core team member (later referred to
as committers), but comments and suggestions from others are encouraged and welcome.

The process is intended to provide timely and actionable feedback for any submission.

1.15.1 Asking For Help

cloud-init contributors, potential contributors, community members and users are encouraged to ask for any help that
they need. If you have questions about the code review process, or at any point during the code review process, these
are the available avenues:

• if you have an open Pull Request, comment on that pull request

• join the #cloud-init channel on the Freenode IRC network and ask away

• send an email to the cloud-init mailing list, cloud-init@lists.launchpad.net

These are listed in rough order of preference, but use whichever of them you are most comfortable with.

1.15.2 Goals

This process has the following goals:

• Ensure code reviews occur in a timely fashion and provide actionable feedback if changes are desired.

• Ensure the minimization of ancillary problems to increase the efficiency for those reviewing the submitted code

1.15.3 Role Definitions

Any code review process will have (at least) two involved parties. For our purposes, these parties are referred to as
Proposer and Reviewer. (We also have the Committer role which is a special case of the Reviewer role.) The terms
are defined here (and the use of the singular form is not meant to imply that they refer to a single person):

Proposer The person proposing a pull request (hereafter known as a PR).

Reviewer A person who is reviewing a PR.

Committer A cloud-init core developer (i.e. a person who has permission to merge PRs into master).
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1.15.4 Prerequisites For Landing Pull Requests

Before a PR can be landed into master, the following conditions must be met:

• the CLA has been signed by the Proposer (or is covered by an entity-level CLA signature)

• all required status checks are passing

• at least one “Approve” review from a Committer

• no “Request changes” reviews from any Committer

The following conditions should be met:

• any Python functions/methods/classes have docstrings added/updated

• any changes to config module behaviour are captured in the documentation of the config module

• any Python code added has corresponding unit tests

• no “Request changes” reviews from any Reviewer

These conditions can be relaxed at the discretion of the Committers on a case-by-case basis. Generally, for account-
ability, this should not be the decision of a single Committer, and the decision should be documented in comments
on the PR.

(To take a specific example, the cc_phone_home module had no tests at the time PR #237 was submitted, so the
Proposer was not expected to write a full set of tests for their minor modification, but they were expected to update
the config module docs.)

1.15.5 Non-Committer Reviews

Reviews from non-Committers are always welcome. Please feel empowered to review PRs and leave your thoughts
and comments on any submitted PRs, regardless of the Proposer.

Much of the below process is written in terms of the Committers. This is not intended to reflect that reviews should
only come from that group, but acknowledges that we are ultimately responsible for maintaining the standards of the
codebase. It would be entirely reasonable (and very welcome) for a Reviewer to only examine part of a PR, but it
would not be appropriate for a Committer to merge a PR without full scrutiny.

1.15.6 Opening Phase

In this phase, the Proposer is responsible for opening a pull request and meeting the prerequisites laid out above.

If they need help understanding the prerequisites, or help meeting the prerequisites, then they can (and should!) ask
for help. See the Asking For Help section above for the ways to do that.

These are the steps that comprise the opening phase:

1. The Proposer opens PR

2. CI runs automatically, and if

CI fails The Proposer is expected to fix CI failures. If the Proposer doesn’t understand the nature of the
failures they are seeing, they should comment in the PR to request assistance, or use another way of
Asking For Help.

(Note that if assistance is not requested, the Committers will assume that the Proposer is working on
addressing the failures themselves. If you require assistance, please do ask for help!)

CI passes Move on to the Review Phase.
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1.15.7 Review Phase

In this phase, the Proposer and the Reviewers will iterate together to, hopefully, get the PR merged into the cloud-init
codebase. There are three potential outcomes: merged, rejected permanently, and temporarily closed. (The first two
are covered in this section; see Inactive Pull Requests for details about temporary closure.)

(In the below, when the verbs “merge” or “squash merge” are used, they should be understood to mean “squash merged
using the GitHub UI”, which is the only way that changes can land in cloud-init’s master branch.)

These are the steps that comprise the review phase:

1. The Committers assign a Committer to the PR

This Committer is expected to shepherd the PR to completion (and merge it, if that is the outcome reached).
This means that they will perform an initial review, and monitor the PR to ensure that the Proposer is receiving
any assistance that they require. The Committers will perform this assignment on a daily basis.

This assignment is intended to ensure that the Proposer has a clear point of contact with a cloud-init core
developer, and that they get timely feedback after submitting a PR. It is not intended to preclude reviews from
any other Reviewers, nor to imply that the Committer has ownership over the review process.

The assigned Committer may choose to delegate the code review of a PR to another Reviewer if they think that
they would be better suited.

(Note that, in GitHub terms, this is setting an Assignee, not requesting a review.)

2. That Committer performs an initial review of the PR, resulting in one of the following:

Approve If the submitted PR meets all of the Prerequisites For Landing Pull Requests and passes code review,
then the Committer will squash merge immediately.

There may be circumstances where a PR should not be merged immediately. The wip label will be applied
to PRs for which this is true. Only Committers are able to apply labels to PRs, so anyone who believes
that this label should be applied to a PR should request its application in a comment on the PR.

The review process is DONE.

Approve (with nits) If the Proposer submits their PR with “Allow edits from maintainer” enabled, and the
only changes the Committer requests are minor “nits”, the Committer can push fixes for those nits and
immediately squash merge. If the Committer does not wish to fix these nits but believes they should block
a straight-up Approve, then their review should be “Needs Changes” instead.

A nit is understood to be something like a minor style issue or a spelling error, generally confined to a
single line of code.

If a Committer is unsure as to whether their requested change is a nit, they should not treat it as a nit.

(If a Proposer wants to opt-out of this, then they should uncheck “Allow edits from maintainer” when
submitting their PR.)

The review process is DONE.

Outright rejection The Committer will close the PR, with useful messaging for the Proposer as to why this
has happened.

This is reserved for cases where the proposed change is completely unfit for landing, and there is no
reasonable path forward. This should only be used sparingly, as there are very few cases where proposals
are completely unfit.

If a different approach to the same problem is planned, it should be submitted as a separate PR. The
Committer should include this information in their message when the PR is closed.

The review process is DONE.

156 Chapter 1. Getting help



cloud-init, Release 20.2

Needs Changes The Committer will give the Proposer a clear idea of what is required for an Approve vote
or, for more complex PRs, what the next steps towards an Approve vote are.

The Proposer will ask questions if they don’t understand, or disagree with, the Committer’s review
comments.

Once consensus has been reached, the Proposer will address the review comments.

Once the review comments are addressed (as well as, potentially, in the interim), CI will run. If CI fails,
the Proposer is expected to fix CI failures. If CI passes, the Proposer should indicate that the PR is ready
for re-review (by @ing the assigned reviewer), effectively moving back to the start of this section.

1.15.8 Inactive Pull Requests

PRs will be temporarily closed if they have been waiting on Proposer action for a certain amount of time without
activity. A PR will be marked as stale (with an explanatory comment) after 14 days of inactivity. It will be closed after
a further 7 days of inactivity.

These closes are not considered permanent, and the closing message should reflect this for the Proposer. However,
if a PR is reopened, it should effectively enter the Opening Phase again, as it may need some work done to get CI
passing again.

1.16 Security Policy

The following documents the upstream cloud-init security policy.

1.16.1 Reporting

If a user finds a security issue, they are requested to file a private security bug on Launchpad. To ensure the information
stays private, change the “This bug contains information that is:” from “Public” to “Private Security” when filing.

After the bug is received, the issue is triaged within 2 working days of being reported and a response is sent to the
reporter.

1.16.2 cloud-init-security

The cloud-init-security Launchpad team is a private, invite-only team used to discuss and coordinate security issues
with the project.

Any issues disclosed to the cloud-init-security mailing list are considered embargoed and should only be discussed
with other members of the cloud-init-security mailing list before the coordinated release date, unless specific exception
is granted by the administrators of the mailing list. This includes disclosure of any details related to the vulnerability
or the presence of a vulnerability itself. Violation of this policy may result in removal from the list for the company or
individual involved.

1.16.3 Evaluation

If the reported bug is deemed a real security issue a CVE is assigned by the Canonical Security Team as CVE Num-
bering Authority (CNA).

If it is deemed a regular, non-security, issue, the reporter will be asked to follow typical bug reporting procedures.
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In addition to the disclosure timeline, the core Canonical cloud-init team will enlist the expertise of the Ubuntu Security
team for guidance on industry-standard disclosure practices as necessary.

If an issue specifically involves another distro or cloud vendor, additional individuals will be informed of the issue to
help in evaluation.

1.16.4 Disclosure

Disclosure of security issues will be made with a public statement. Once the determined time for disclosure has arrived
the following will occur:

• A public bug is filed/made public with vulnerability details, CVE, mitigations and where to obtain the fix

• An email is sent to the public cloud-init mailing list

The disclosure timeframe is coordinated with the reporter and members of the cloud-init-security list. This depends
on a number of factors:

• The reporter might have their own disclosure timeline (e.g. Google Project Zero and many others use a 90-days
after initial report OR when a fix becomes public)

• It might take time to decide upon and develop an appropriate fix

• A distros might want extra time to backport any possible fixes before the fix becomes public

• A cloud may need additional time to prepare to help customers or impliment a fix

• The issue might be deemed low priority

• May wish to to align with an upcoming planned release

1.17 Testing and debugging cloud-init

1.17.1 Overview

This topic will discuss general approaches for test and debug of cloud-init on deployed instances.

1.17.2 Boot Time Analysis - cloud-init analyze

Occasionally instances don’t appear as performant as we would like and cloud-init packages a simple facility to inspect
what operations took cloud-init the longest during boot and setup.

The script /usr/bin/cloud-init has an analyze sub-command analyze which parses any cloud-init.log file into formatted
and sorted events. It allows for detailed analysis of the most costly cloud-init operations are to determine the long-pole
in cloud-init configuration and setup. These subcommands default to reading /var/log/cloud-init.log.

• analyze show Parse and organize cloud-init.log events by stage and include each sub-stage granularity with
time delta reports.

$ cloud-init analyze show -i my-cloud-init.log
-- Boot Record 01 --
The total time elapsed since completing an event is printed after the "@"
character.
The time the event takes is printed after the "+" character.

Starting stage: modules-config

(continues on next page)
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(continued from previous page)

|`->config-emit_upstart ran successfully @05.47600s +00.00100s
|`->config-snap_config ran successfully @05.47700s +00.00100s
|`->config-ssh-import-id ran successfully @05.47800s +00.00200s
|`->config-locale ran successfully @05.48000s +00.00100s
...

• analyze dump Parse cloud-init.log into event records and return a list of dictionaries that can be consumed
for other reporting needs.

$ cloud-init analyze dump -i my-cloud-init.log
[
{
"description": "running config modules",
"event_type": "start",
"name": "modules-config",
"origin": "cloudinit",
"timestamp": 1510807493.0

},...

• analyze blame Parse cloud-init.log into event records and sort them based on highest time cost for quick
assessment of areas of cloud-init that may need improvement.

$ cloud-init analyze blame -i my-cloud-init.log
-- Boot Record 11 --

00.01300s (modules-final/config-scripts-per-boot)
00.00400s (modules-final/config-final-message)
00.00100s (modules-final/config-rightscale_userdata)
...

• analyze boot Make subprocess calls to the kernel in order to get relevant pre-cloud-init timestamps, such
as the kernel start, kernel finish boot, and cloud-init start.

$ cloud-init analyze boot
-- Most Recent Boot Record --

Kernel Started at: 2019-06-13 15:59:55.809385
Kernel ended boot at: 2019-06-13 16:00:00.944740
Kernel time to boot (seconds): 5.135355
Cloud-init start: 2019-06-13 16:00:05.738396
Time between Kernel boot and Cloud-init start (seconds): 4.793656

Analyze quickstart - LXC

To quickly obtain a cloud-init log try using lxc on any ubuntu system:

$ lxc init ubuntu-daily:xenial x1
$ lxc start x1
$ # Take lxc's cloud-init.log and pipe it to the analyzer
$ lxc file pull x1/var/log/cloud-init.log - | cloud-init analyze dump -i -
$ lxc file pull x1/var/log/cloud-init.log - | \

python3 -m cloudinit.analyze dump -i -

Analyze quickstart - KVM

To quickly analyze a KVM a cloud-init log:
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1. Download the current cloud image

$ wget https://cloud-images.ubuntu.com/daily/server/xenial/current/xenial-server-
→˓cloudimg-amd64.img

2. Create a snapshot image to preserve the original cloud-image

$ qemu-img create -b xenial-server-cloudimg-amd64.img -f qcow2 \
test-cloudinit.qcow2

3. Create a seed image with metadata using cloud-localds

$ cat > user-data <<EOF
#cloud-config
password: passw0rd
chpasswd: { expire: False }
EOF

$ cloud-localds my-seed.img user-data

4. Launch your modified VM

$ kvm -m 512 -net nic -net user -redir tcp:2222::22 \
-drive file=test-cloudinit.qcow2,if=virtio,format=qcow2 \
-drive file=my-seed.img,if=virtio,format=raw

5. Analyze the boot (blame, dump, show)

$ ssh -p 2222 ubuntu@localhost 'cat /var/log/cloud-init.log' | \
cloud-init analyze blame -i -

1.17.3 Running single cloud config modules

This subcommand is not called by the init system. It can be called manually to load the configured datasource
and run a single cloud-config module once using the cached userdata and metadata after the instance has booted.
Each cloud-config module has a module FREQUENCY configured: PER_INSTANCE, PER_BOOT, PER_ONCE or
PER_ALWAYS. When a module is run by cloud-init, it stores a semaphore file in /var/lib/cloud/instance/
sem/config_<module_name>.<frequency> which marks when the module last successfully ran. Presence
of this semaphore file prevents a module from running again if it has already been run. To ensure that a module is run
again, the desired frequency can be overridden on the commandline:

$ sudo cloud-init single --name cc_ssh --frequency always
...
Generating public/private ed25519 key pair
...

Inspect cloud-init.log for output of what operations were performed as a result.

1.17.4 Stable Release Updates (SRU) testing for cloud-init

Once an Ubuntu release is stable (i.e. after it is released), updates for it must follow a special procedure called a “stable
release update” (or SRU).

The cloud-init project has a specific process it follows when validating a cloud-init SRU, documented in the Cloudini-
tUpdates wiki page.

Generally an SRU test of cloud-init performs the following:
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• Install a pre-release version of cloud-init from the -proposed APT pocket (e.g. bionic-proposed)

• Upgrade cloud-init and attempt a clean run of cloud-init to assert the new version of cloud-init works properly
the specific platform and Ubuntu series

• Check for tracebacks or errors in behavior

Manual SRU verification procedure

Below are steps to manually test a pre-release version of cloud-init from -proposed

Note: For each Ubuntu SRU, the Ubuntu Server team manually validates the new version of cloud-init on these
platforms: Amazon EC2, Azure, GCE, OpenStack, Oracle, Softlayer (IBM), LXD, KVM

1. Launch a VM on your favorite platform, providing this cloud-config user-data and replacing
<YOUR_LAUNCHPAD_USERNAME> with your username:

## template: jinja
#cloud-config
ssh_import_id: [<YOUR_LAUNCHPAD_USERNAME>]
hostname: SRU-worked-{{v1.cloud_name}}

2. Wait for current cloud-init to complete, replace <YOUR_VM_IP> with the IP address of the VM that you
launched in step 1:

CI_VM_IP=<YOUR_VM_IP>
# Make note of the datasource cloud-init detected in --long output.
# In step 5, you will use this to confirm the same datasource is detected after
→˓upgrade.
ssh ubuntu@$CI_VM_IP -- cloud-init status --wait --long

3. Set up the -proposed pocket on your VM and upgrade to the -proposed cloud-init:

# Create a script that will add the -proposed pocket to APT's sources
# and install cloud-init from that pocket
cat > setup_proposed.sh <<EOF
#/bin/bash
mirror=http://archive.ubuntu.com/ubuntu
echo deb \$mirror \$(lsb_release -sc)-proposed main | tee \

/etc/apt/sources.list.d/proposed.list
apt-get update -q
apt-get install -qy cloud-init
EOF

scp setup_proposed.sh ubuntu@$CI_VM_IP:.
ssh ubuntu@$CI_VM_IP -- sudo bash setup_proposed.sh

4. Change hostname, clean cloud-init’s state, and reboot to run cloud-init from scratch:

ssh ubuntu@$CI_VM_IP -- sudo hostname something-else
ssh ubuntu@$CI_VM_IP -- sudo cloud-init clean --logs --reboot

5. Validate -proposed cloud-init came up without error
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# Block until cloud-init completes and verify from --long the datasource
# from step 1. Errors would show up in --long

ssh ubuntu@$CI_VM_IP -- cloud-init status --wait --long
# Make sure hostname was set properly to SRU-worked-<cloud name>
ssh ubuntu@$CI_VM_IP -- hostname
# Check for any errors or warnings in cloud-init logs.
# (This should produce no output if successful.)
ssh ubuntu@$CI_VM_IP -- grep Trace "/var/log/cloud-init*"

6. If you encounter an error during SRU testing:

• Create a new cloud-init bug reporting the version of cloud-init affected

• Ping upstream cloud-init on Freenode’s #cloud-init IRC channel

1.18 Logging

Cloud-init supports both local and remote logging configurable through python’s built-in logging configuration and
through the cloud-init rsyslog module.

1.18.1 Command Output

Cloud-init can redirect its stdout and stderr based on config given under the output config key. The output of any
commands run by cloud-init and any user or vendor scripts provided will also be included here. The output key
accepts a dictionary for configuration. Output files may be specified individually for each stage (init, config, and
final), or a single key all may be used to specify output for all stages.

The output for each stage may be specified as a dictionary of output and error keys, for stdout and stderr respec-
tively, as a tuple with stdout first and stderr second, or as a single string to use for both. The strings passed to all
of these keys are handled by the system shell, so any form of redirection that can be used in bash is valid, including
piping cloud-init’s output to tee, or logger. If only a filename is provided, cloud-init will append its output to the
file as though >> was specified.

By default, cloud-init loads its output configuration from /etc/cloud/cloud.cfg.d/05_logging.cfg. The
default config directs both stdout and stderr from all cloud-init stages to /var/log/cloud-init-output.log.
The default config is given as

output: { all: "| tee -a /var/log/cloud-init-output.log" }

For a more complex example, the following configuration would output the init stage to /var/log/cloud-init.
out and /var/log/cloud-init.err, for stdout and stderr respectively, replacing anything that was previously
there. For the config stage, it would pipe both stdout and stderr through tee -a /var/log/cloud-config.
log. For the final stage it would append the output of stdout and stderr to /var/log/cloud-final.out and
/var/log/cloud-final.err respectively.

output:
init:

output: "> /var/log/cloud-init.out"
error: "> /var/log/cloud-init.err"

config: "tee -a /var/log/cloud-config.log"
final:

- ">> /var/log/cloud-final.out"
- "/var/log/cloud-final.err"
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Python Logging

Cloud-init uses the python logging module, and can accept config for this module using the standard python fileConfig
format. Cloud-init looks for config for the logging module under the logcfg key.

Note: the logging configuration is not yaml, it is python fileConfig format, and is passed through directly to the
python logging module. please use the correct syntax for a multi-line string in yaml.

By default, cloud-init uses the logging configuration provided in /etc/cloud/cloud.cfg.d/05_logging.
cfg. The default python logging configuration writes all cloud-init events with a priority of WARNING or higher to
console, and writes all events with a level of DEBUG or higher to /var/log/cloud-init.log and via syslog.

Python’s fileConfig format consists of sections with headings in the format [title] and key value pairs in each sec-
tion. Configuration for python logging must contain the sections [loggers], [handlers], and [formatters],
which name the entities of their respective types that will be defined. The section name for each defined logger, han-
dler and formatter will start with its type, followed by an underscore (_) and the name of the entity. For example, if a
logger was specified with the name log01, config for the logger would be in the section [logger_log01].

Logger config entries contain basic logging set up. They may specify a list of handlers to send logging events to as
well as the lowest priority level of events to handle. A logger named root must be specified and its configuration
(under [logger_root]) must contain a level and a list of handlers. A level entry can be any of the following:
DEBUG, INFO, WARNING, ERROR, CRITICAL, or NOTSET. For the root logger the NOTSET option will allow all
logging events to be recorded.

Each configured handler must specify a class under the python’s logging package namespace. A handler may
specify a message formatter to use, a priority level, and arguments for the handler class. Common handlers are
StreamHandler, which handles stream redirects (i.e. logging to stderr), and FileHandler which outputs to
a log file. The logging module also supports logging over net sockets, over http, via smtp, and additional complex
configurations. For full details about the handlers available for python logging, please see the documentation for
python logging handlers.

Log messages are formatted using the logging.Formatter class, which is configured using formatter config
entities. A default format of %(message)s is given if no formatter configs are specified. Formatter config entities
accept a format string which supports variable replacements. These may also accept a datefmt string which may be
used to configure the timestamp used in the log messages. The format variables %(asctime)s, %(levelname)s
and %(message)s are commonly used and represent the timestamp, the priority level of the event and the event
message. For additional information on logging formatters see python logging formatters.

Note: by default the format string used in the logging formatter are in python’s old style %s form. the str.
format() and string.Template styles can also be used by using { or $ in place of % by setting the style
parameter in formatter config.

A simple, but functional python logging configuration for cloud-init is below. It will log all messages of priority
DEBUG or higher both stderr and /tmp/my.log using a StreamHandler and a FileHandler, using the default
format string %(message)s:

logcfg: |
[loggers]
keys=root,cloudinit
[handlers]
keys=ch,cf
[formatters]
keys=
[logger_root]

(continues on next page)
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level=DEBUG
handlers=
[logger_cloudinit]
level=DEBUG
qualname=cloudinit
handlers=ch,cf
[handler_ch]
class=StreamHandler
level=DEBUG
args=(sys.stderr,)
[handler_cf]
class=FileHandler
level=DEBUG
args=('/tmp/my.log',)

For additional information about configuring python’s logging module, please see the documentation for python log-
ging config.

Rsyslog Module

Cloud-init’s cc_rsyslog module allows for fully customizable rsyslog configuration under the rsyslog config
key. The simplest way to use the rsyslog module is by specifying remote servers under the remotes key in rsyslog
config. The remotes key takes a dictionary where each key represents the name of an rsyslog server and each value
is the configuration for that server. The format for server config is:

• optional filter for log messages (defaults to *.*)

• optional leading @ or @@, indicating udp and tcp respectively (defaults to @, for udp)

• ipv4 or ipv6 hostname or address. ipv6 addresses must be in [::1] format, (e.g. @[fd00::1]:514)

• optional port number (defaults to 514)

For example, to send logging to an rsyslog server named log_serv with address 10.0.4.1, using port number
514, over udp, with all log messages enabled one could use either of the following.

With all options specified:

rsyslog:
remotes:

log_serv: "*.* @10.0.4.1:514"

With defaults used:

rsyslog:
remotes:

log_serv: "10.0.4.1"

For more information on rsyslog configuration, see Rsyslog.

1.19 Directory layout

Cloud-init’s directory structure is somewhat different from a regular application:
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/var/lib/cloud/
- data/

- instance-id
- previous-instance-id
- datasource
- previous-datasource
- previous-hostname

- handlers/
- instance
- instances/

i-00000XYZ/
- boot-finished
- cloud-config.txt
- datasource
- handlers/
- obj.pkl
- scripts/
- sem/
- user-data.txt
- user-data.txt.i

- scripts/
- per-boot/
- per-instance/
- per-once/

- seed/
- sem/

/var/lib/cloud

The main directory containing the cloud-init specific subdirectories. It is typically located at /var/lib
but there are certain configuration scenarios where this can be altered.

TBD, describe this overriding more.

data/

Contains information related to instance ids, datasources and hostnames of the previous and current in-
stance if they are different. These can be examined as needed to determine any information related to a
previous boot (if applicable).

handlers/

Custom part-handlers code is written out here. Files that end up here are written out with in the
scheme of part-handler-XYZ where XYZ is the handler number (the first handler found starts at 0).

instance

A symlink to the current instances/ subdirectory that points to the currently active instance (which is
active is dependent on the datasource loaded).

instances/

All instances that were created using this image end up with instance identifier subdirectories (and corre-
sponding data for each instance). The currently active instance will be symlinked the instance symlink
file defined previously.

scripts/

Scripts that are downloaded/created by the corresponding part-handler will end up in one of these
subdirectories.

seed/
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TBD

sem/

Cloud-init has a concept of a module semaphore, which basically consists of the module name and its
frequency. These files are used to ensure a module is only ran per-once, per-instance, per-always. This
folder contains semaphore files which are only supposed to run per-once (not tied to the instance id).

1.20 Analyze

The analyze subcommand was added to cloud-init in order to help analyze cloud-init boot time performance. It is
loosely based on systemd-analyze where there are four subcommands:

• blame

• show

• dump

• boot

1.20.1 Usage

The analyze command requires one of the four subcommands:

$ cloud-init analyze blame
$ cloud-init analyze show
$ cloud-init analyze dump
$ cloud-init analyze boot

1.20.2 Availability

The analyze subcommand is generally available across all distributions with the exception of Gentoo and FreeBSD.

1.20.3 Subcommands

Blame

The blame action matches systemd-analyze blame where it prints, in descending order, the units that took
the longest to run. This output is highly useful for examining where cloud-init is spending its time during execution.

$ cloud-init analyze blame
-- Boot Record 01 --

00.80300s (init-network/config-growpart)
00.64300s (init-network/config-resizefs)
00.62100s (init-network/config-ssh)
00.57300s (modules-config/config-grub-dpkg)
00.40300s (init-local/search-NoCloud)
00.38200s (init-network/config-users-groups)
00.19800s (modules-config/config-apt-configure)
00.03700s (modules-final/config-keys-to-console)
00.02100s (init-network/config-update_etc_hosts)
00.02100s (init-network/check-cache)

(continues on next page)
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00.00800s (modules-final/config-ssh-authkey-fingerprints)
00.00800s (init-network/consume-vendor-data)
00.00600s (modules-config/config-timezone)
00.00500s (modules-final/config-final-message)
00.00400s (init-network/consume-user-data)
00.00400s (init-network/config-mounts)
00.00400s (init-network/config-disk_setup)
00.00400s (init-network/config-bootcmd)
00.00400s (init-network/activate-datasource)
00.00300s (init-network/config-update_hostname)
00.00300s (init-network/config-set_hostname)
00.00200s (modules-final/config-snappy)
00.00200s (init-network/config-rsyslog)
00.00200s (init-network/config-ca-certs)
00.00200s (init-local/check-cache)
00.00100s (modules-final/config-scripts-vendor)
00.00100s (modules-final/config-scripts-per-once)
00.00100s (modules-final/config-salt-minion)
00.00100s (modules-final/config-rightscale_userdata)
00.00100s (modules-final/config-phone-home)
00.00100s (modules-final/config-package-update-upgrade-install)
00.00100s (modules-final/config-fan)
00.00100s (modules-config/config-ubuntu-advantage)
00.00100s (modules-config/config-ssh-import-id)
00.00100s (modules-config/config-snap)
00.00100s (modules-config/config-set-passwords)
00.00100s (modules-config/config-runcmd)
00.00100s (modules-config/config-locale)
00.00100s (modules-config/config-byobu)
00.00100s (modules-config/config-apt-pipelining)
00.00100s (init-network/config-write-files)
00.00100s (init-network/config-seed_random)
00.00100s (init-network/config-migrator)
00.00000s (modules-final/config-ubuntu-drivers)
00.00000s (modules-final/config-scripts-user)
00.00000s (modules-final/config-scripts-per-instance)
00.00000s (modules-final/config-scripts-per-boot)
00.00000s (modules-final/config-puppet)
00.00000s (modules-final/config-power-state-change)
00.00000s (modules-final/config-mcollective)
00.00000s (modules-final/config-lxd)
00.00000s (modules-final/config-landscape)
00.00000s (modules-final/config-chef)
00.00000s (modules-config/config-snap_config)
00.00000s (modules-config/config-ntp)
00.00000s (modules-config/config-emit_upstart)
00.00000s (modules-config/config-disable-ec2-metadata)
00.00000s (init-network/setup-datasource)

1 boot records analyzed

Show

The show action is similar to systemd-analyze critical-chain which prints a list of units, the time they
started and how long they took. Cloud-init has four stages and within each stage a number of modules may run de-
pending on configuration. cloudinit-analyze show will, for each boot, print this information and a summary
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total time, per boot.

The following is an abbreviated example of the show output:

$ cloud-init analyze show
-- Boot Record 01 --
The total time elapsed since completing an event is printed after the "@" character.
The time the event takes is printed after the "+" character.

Starting stage: init-local
|``->no cache found @00.01700s +00.00200s
|`->found local data from DataSourceNoCloud @00.11000s +00.40300s
Finished stage: (init-local) 00.94200 seconds

Starting stage: init-network
|`->restored from cache with run check: DataSourceNoCloud [seed=/dev/sr0][dsmode=net]
→˓@04.79500s +00.02100s
|`->setting up datasource @04.88900s +00.00000s
|`->reading and applying user-data @04.90100s +00.00400s
|`->reading and applying vendor-data @04.90500s +00.00800s
|`->activating datasource @04.95200s +00.00400s
Finished stage: (init-network) 02.72100 seconds

Starting stage: modules-config
|`->config-emit_upstart ran successfully @15.43100s +00.00000s
|`->config-snap ran successfully @15.43100s +00.00100s
...
|`->config-runcmd ran successfully @16.22300s +00.00100s
|`->config-byobu ran successfully @16.23400s +00.00100s
Finished stage: (modules-config) 00.83500 seconds

Starting stage: modules-final
|`->config-snappy ran successfully @16.87400s +00.00200s
|`->config-package-update-upgrade-install ran successfully @16.87600s +00.00100s
...
|`->config-final-message ran successfully @16.93700s +00.00500s
|`->config-power-state-change ran successfully @16.94300s +00.00000s
Finished stage: (modules-final) 00.10300 seconds

Total Time: 4.60100 seconds

1 boot records analyzed

If additional boot records are detected then they are printed out from oldest to newest.

Dump

The dump action simply dumps the cloud-init logs that the analyze module is performing the analysis on and returns
a list of dictionaries that can be consumed for other reporting needs. Each element in the list is a boot entry.

$ cloud-init analyze dump
[
{

"description": "starting search for local datasources",
"event_type": "start",
"name": "init-local",
"origin": "cloudinit",

(continues on next page)
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"timestamp": 1567057578.037
},
{

"description": "attempting to read from cache [check]",
"event_type": "start",
"name": "init-local/check-cache",
"origin": "cloudinit",
"timestamp": 1567057578.054

},
{

"description": "no cache found",
"event_type": "finish",
"name": "init-local/check-cache",
"origin": "cloudinit",
"result": "SUCCESS",
"timestamp": 1567057578.056

},
{

"description": "searching for local data from DataSourceNoCloud",
"event_type": "start",
"name": "init-local/search-NoCloud",
"origin": "cloudinit",
"timestamp": 1567057578.147

},
{

"description": "found local data from DataSourceNoCloud",
"event_type": "finish",
"name": "init-local/search-NoCloud",
"origin": "cloudinit",
"result": "SUCCESS",
"timestamp": 1567057578.55

},
{

"description": "searching for local datasources",
"event_type": "finish",
"name": "init-local",
"origin": "cloudinit",
"result": "SUCCESS",
"timestamp": 1567057578.979

},
{

"description": "searching for network datasources",
"event_type": "start",
"name": "init-network",
"origin": "cloudinit",
"timestamp": 1567057582.814

},
{

"description": "attempting to read from cache [trust]",
"event_type": "start",
"name": "init-network/check-cache",
"origin": "cloudinit",
"timestamp": 1567057582.832

},
...
{

"description": "config-power-state-change ran successfully",
(continues on next page)
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"event_type": "finish",
"name": "modules-final/config-power-state-change",
"origin": "cloudinit",
"result": "SUCCESS",
"timestamp": 1567057594.98

},
{

"description": "running modules for final",
"event_type": "finish",
"name": "modules-final",
"origin": "cloudinit",
"result": "SUCCESS",
"timestamp": 1567057594.982

}
]

Boot

The boot action prints out kernel related timestamps that are not included in any of the cloud-init logs. There are
three different timestamps that are presented to the user:

• kernel start

• kernel finish boot

• cloud-init start

This was added for additional clarity into the boot process that cloud-init does not have control over, to aid in debugging
of performance issues related to cloud-init startup, and tracking regression.

$ cloud-init analyze boot
-- Most Recent Boot Record --

Kernel Started at: 2019-08-29 01:35:37.753790
Kernel ended boot at: 2019-08-29 01:35:38.807407
Kernel time to boot (seconds): 1.053617000579834
Cloud-init activated by systemd at: 2019-08-29 01:35:43.992460
Time between Kernel end boot and Cloud-init activation (seconds): 5.

→˓185053110122681
Cloud-init start: 2019-08-29 08:35:45.867000

successful

Timestamp Gathering

The following boot related timestamps are gathered on demand when cloud-init analyze boot runs:

• Kernel startup gathered from system uptime

• Kernel finishes initialization from systemd UserSpaceMonotonicTimestamp property

• Cloud-init activation from the property InactiveExitTimestamp of the cloud-init local systemd unit

In order to gather the necessary timestamps using systemd, running the commands below will gather the Userspace-
Timestamp and InactiveExitTimestamp:
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$ systemctl show -p UserspaceTimestampMonotonic
UserspaceTimestampMonotonic=989279
$ systemctl show cloud-init-local -p InactiveExitTimestampMonotonic
InactiveExitTimestampMonotonic=4493126

The UserspaceTimestamp tracks when the init system starts, which is used as an indicator of kernel finishing initial-
ization. The InactiveExitTimestamp tracks when a particular systemd unit transitions from the Inactive to Active state,
which can be used to mark the beginning of systemd’s activation of cloud-init.

Currently this only works for distros that use systemd as the init process. We will be expanding support for other
distros in the future and this document will be updated accordingly.

If systemd is not present on the system, dmesg is used to attempt to find an event that logs the beginning of the
init system. However, with this method only the first two timestamps are able to be found; dmesg does not monitor
userspace processes, so no cloud-init start timestamps are emitted like when using systemd.

1.21 Docs

These docs are hosted on Read the Docs. The following will explain how to contribute to and build these docs locally.

The documentation is primarily written in reStructuredText.

1.21.1 Building

There is a makefile target to build the documentation for you:

$ tox -e doc

This will do two things:

• Build the documentation using sphinx

• Run doc8 against the documentation source code

Once build the HTML files will be viewable in doc/rtd_html. Use your web browser to open index.html to
view and navigate the site.

1.21.2 Style Guide

Headings

The headings used across the documentation use the following hierarchy:

• *****: used once atop of a new page

• =====: each sections on the page

• -----: subsections

• ^^^^^: sub-subsections

• """"": paragraphs

The top level header ###### is reserved for the first page.

If under and overline are used, their length must be identical. The length of the underline must be at least as long as
the title itself
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Line Length

Please keep the line lengths to a maximum of 79 characters. This ensures that the pages and tables do not get too wide
that side scrolling is required.

Header

Adding a link at the top of the page allows for the page to be referenced by other pages. For example for the FAQ page
this would be:

.. _faq:

Footer

The footer should include the textwidth

.. vi: textwidth=79

Vertical Whitespace

One newline between each section helps ensure readability of the documentation source code.

Common Words

There are some common words that should follow specific usage:

• cloud-init: always lower case with a hyphen, unless starting a sentence in which case only the ‘C’ is
capitalized (e.g. Cloud-init).

• metadata: one word

• user data: two words, not to be combined

• vendor data: like user data, it is two words

1.22 Integration Testing

1.22.1 Overview

This page describes the execution, development, and architecture of the cloud-init integration tests:

• Execution explains the options available and running of tests

• Development shows how to write test cases

• Architecture explains the internal processes
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1.22.2 Execution

Overview

In order to avoid the need for dependencies and ease the setup and configuration users can run the integration tests via
tox:

$ git clone https://github.com/canonical/cloud-init
$ cd cloud-init
$ tox -e citest -- -h

Everything after the double dash will be passed to the integration tests. Executing tests has several options:

• run an alias to run both collect and verify. The tree_run command does the same thing, except uses
a deb built from the current working tree.

• collect deploys on the specified platform and distro, patches with the requested deb or rpm, and finally
collects output of the arbitrary commands. Similarly, `tree_collect will collect output using a deb built
from the current working tree.

• verify given a directory of test data, run the Python unit tests on it to generate results.

• bddeb will build a deb of the current working tree.

Run

The first example will provide a complete end-to-end run of data collection and verification. There are additional
examples below explaining how to run one or the other independently.

$ git clone https://github.com/canonical/cloud-init
$ cd cloud-init
$ tox -e citest -- run --verbose \

--os-name stretch --os-name xenial \
--deb cloud-init_0.7.8~my_patch_all.deb \
--preserve-data --data-dir ~/collection \
--preserve-instance

The above command will do the following:

• run both collect output and run tests the output

• --verbose verbose output

• --os-name stretch on the Debian Stretch release

• --os-name xenial on the Ubuntu Xenial release

• --deb cloud-init_0.7.8~patch_all.deb use this deb as the version of cloud-init to run with

• --preserve-data always preserve collected data, do not remove data after successful test run

• --preserve-instance do not destroy the instance after test to allow for debugging the stopped instance
during integration test development. By default, test instances are destroyed after the test completes.

• --data-dir ~/collection write collected data into ~/collection, rather than using a temporary directory

For a more detailed explanation of each option see below.
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Note: By default, data collected by the run command will be written into a temporary directory and deleted after a
successful. If you would like to preserve this data, please use the option --preserve-data.

Collect

If developing tests it may be necessary to see if cloud-config works as expected and the correct files are pulled down.
In this case only a collect can be ran by running:

$ tox -e citest -- collect -n xenial --data-dir /tmp/collection

The above command will run the collection tests on xenial and place all results into /tmp/collection.

Verify

When developing tests it is much easier to simply rerun the verify scripts without the more lengthy collect process.
This can be done by running:

$ tox -e citest -- verify --data-dir /tmp/collection

The above command will run the verify scripts on the data discovered in /tmp/collection.

TreeRun and TreeCollect

If working on a cloud-init feature or resolving a bug, it may be useful to run the current copy of cloud-init in the
integration testing environment. The integration testing suite can automatically build a deb based on the current
working tree of cloud-init and run the test suite using this deb.

The tree_run and tree_collect commands take the same arguments as the run and collect commands.
These commands will build a deb and write it into a temporary file, then start the test suite and pass that deb in. To
build a deb only, and not run the test suite, the bddeb command can be used.

Note that code in the cloud-init working tree that has not been committed when the cloud-init deb is built will still
be included. To build a cloud-init deb from or use the tree_run command using a copy of cloud-init located in a
different directory, use the option --cloud-init /path/to/cloud-init.

$ tox -e citest -- tree_run --verbose \
--os-name xenial --os-name stretch \
--test modules/final_message --test modules/write_files \
--result /tmp/result.yaml

Bddeb

The bddeb command can be used to generate a deb file. This is used by the tree_run and tree_collect commands to
build a deb of the current working tree. It can also be used a user to generate a deb for use in other situations and avoid
needing to have all the build and test dependencies installed locally.

• --bddeb-args: arguments to pass through to bddeb

• --build-os: distribution to use as build system (default is xenial)

• --build-platform: platform to use for build system (default is lxd)

• --cloud-init: path to base of cloud-init tree (default is ‘.’)
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• --deb: path to write output deb to (default is ‘.’)

Setup Image

By default an image that is used will remain unmodified, but certain scenarios may require image modification. For
example, many images may use a much older cloud-init. As a result tests looking at newer functionality will fail
because a newer version of cloud-init may be required. The following options can be used for further customization:

• --deb: install the specified deb into the image

• --rpm: install the specified rpm into the image

• --repo: enable a repository and upgrade cloud-init afterwards

• --ppa: enable a ppa and upgrade cloud-init afterwards

• --upgrade: upgrade cloud-init from repos

• --upgrade-full: run a full system upgrade

• --script: execute a script in the image. This can perform any setup required that is not covered by the other
options

1.22.3 Test Case Development

Overview

As a test writer you need to develop a test configuration and a verification file:

• The test configuration specifies a specific cloud-config to be used by cloud-init and a list of arbitrary commands
to capture the output of (e.g my_test.yaml)

• The verification file runs tests on the collected output to determine the result of the test (e.g. my_test.py)

The names must match, however the extensions will of course be different, yaml vs py.

Configuration

The test configuration is a YAML file such as ntp_server.yaml below:

#
# Empty NTP config to setup using defaults
#
# NOTE: this should not require apt feature, use 'which' rather than 'dpkg -l'
# NOTE: this should not require no_ntpdate feature, use 'which' to check for
# installation rather than 'dpkg -l', as 'grep ntp' matches 'ntpdate'
# NOTE: the verifier should check for any ntp server not 'ubuntu.pool.ntp.org'
cloud_config: |
#cloud-config
ntp:
servers:

- pool.ntp.org
required_features:

- apt
- no_ntpdate
- ubuntu_ntp

collect_scripts:
(continues on next page)
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(continued from previous page)

ntp_installed_servers: |
#!/bin/bash
dpkg -l | grep ntp | wc -l

ntp_conf_dist_servers: |
#!/bin/bash
ls /etc/ntp.conf.dist | wc -l

ntp_conf_servers: |
#!/bin/bash
cat /etc/ntp.conf | grep '^server'

There are several keys, 1 required and some optional, in the YAML file:

1. The required key is cloud_config. This should be a string of valid YAML that is exactly what would
normally be placed in a cloud-config file, including the cloud-config header. This essentially sets up the scenario
under test.

2. One optional key is collect_scripts. This key has one or more sub-keys containing strings of arbitrary
commands to execute (e.g. `cat /var/log/cloud-config-output.log`). In the example above the
output of dpkg is captured, grep for ntp, and the number of lines reported. The name of the sub-key is important.
The sub-key is used by the verification script to recall the output of the commands ran.

3. The optional enabled key enables or disables the test case. By default the test case will be enabled.

4. The optional required_features key may be used to specify a list of features flags that an image must
have to be able to run the test case. For example, if a test case relies on an image supporting apt, then the config
for the test case should include required_features: [ apt ].

Default Collect Scripts

By default the following files will be collected for every test. There is no need to specify these items:

• /var/log/cloud-init.log

• /var/log/cloud-init-output.log

• /run/cloud-init/.instance-id

• /run/cloud-init/result.json

• /run/cloud-init/status.json

• `dpkg-query -W -f='${Version}' cloud-init`

Verification

The verification script is a Python file with unit tests like the one, ntp_server.py, below:

# This file is part of cloud-init. See LICENSE file for license information.

"""cloud-init Integration Test Verify Script"""
from tests.cloud_tests.testcases import base

class TestNtp(base.CloudTestCase):
"""Test ntp module"""

def test_ntp_installed(self):

(continues on next page)

176 Chapter 1. Getting help



cloud-init, Release 20.2

(continued from previous page)

"""Test ntp installed"""
out = self.get_data_file('ntp_installed_empty')
self.assertEqual(1, int(out))

def test_ntp_dist_entries(self):
"""Test dist config file has one entry"""
out = self.get_data_file('ntp_conf_dist_empty')
self.assertEqual(1, int(out))

def test_ntp_entires(self):
"""Test config entries"""
out = self.get_data_file('ntp_conf_empty')
self.assertIn('pool 0.ubuntu.pool.ntp.org iburst', out)
self.assertIn('pool 1.ubuntu.pool.ntp.org iburst', out)
self.assertIn('pool 2.ubuntu.pool.ntp.org iburst', out)
self.assertIn('pool 3.ubuntu.pool.ntp.org iburst', out)

# vi: ts=4 expandtab

Here is a breakdown of the unit test file:

• The import statement allows access to the output files.

• The class can be named anything, but must import the base.CloudTestCase, either directly or via another
test class.

• There can be 1 to N number of functions with any name, however only functions starting with test_* will be
executed.

• There can be 1 to N number of classes in a test module, however only classes inheriting from base.
CloudTestCase will be loaded.

• Output from the commands can be accessed via self.get_data_file('key') where key is the sub-key
of collect_scripts above.

• The cloud config that the test ran with can be accessed via self.cloud_config, or any entry from the cloud
config can be accessed via self.get_config_entry('key').

• See the base CloudTestCase for additional helper functions.

Layout

Integration tests are located under the tests/cloud_tests directory. Test configurations are placed under configs and the
test verification scripts under testcases:

cloud-init$ tree -d tests/cloud_tests/
tests/cloud_tests/

configs
bugs
examples
main
modules

testcases
bugs
examples
main
modules
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The sub-folders of bugs, examples, main, and modules help organize the tests. View the README.md in each to
understand in more detail each directory.

Test Creation Helper

The integration testing suite has a built in helper to aid in test development. Help can be invoked via tox -e
citest -- create --help. It can create a template test case config file with user data passed in from the
command line, as well as a template test case verifier module.

The following would create a test case named example under the modules category with the given description, and
cloud config data read in from /tmp/user_data.

$ tox -e citest -- create modules/example \
-d "a simple example test case" -c "$(< /tmp/user_data)"

Development Checklist

• Configuration File

– Named ‘your_test.yaml’

– Contains at least a valid cloud-config

– Optionally, commands to capture additional output

– Valid YAML

– Placed in the appropriate sub-folder in the configs directory

– Any image features required for the test are specified

• Verification File

– Named ‘your_test.py’

– Valid unit tests validating output collected

– Passes pylint & pep8 checks

– Placed in the appropriate sub-folder in the test cases directory

• Tested by running the test:

$ tox -e citest -- run -verbose \
--os-name <release target> \
--test modules/your_test.yaml \
[--deb <build of cloud-init>]

1.22.4 Platforms

EC2

To run on the EC2 platform it is required that the user has an AWS credentials configuration file specifying his or her
access keys and a default region. These configuration files are the standard that the AWS cli and other AWS tools
utilize for interacting directly with AWS itself and are normally generated when running aws configure:
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$ cat $HOME/.aws/credentials
[default]
aws_access_key_id = <KEY HERE>
aws_secret_access_key = <KEY HERE>

$ cat $HOME/.aws/config
[default]
region = us-west-2

Azure Cloud

To run on Azure Cloud platform users login with Service Principal and export credentials file. Region is defaulted
and can be set in tests/cloud_tests/platforms.yaml. The Service Principal credentials are the standard
authentication for Azure SDK to interact with Azure Services:

Create Service Principal account or login

$ az ad sp create-for-rbac --name "APP_ID" --password "STRONG-SECRET-PASSWORD"

$ az login --service-principal --username "APP_ID" --password "STRONG-SECRET-PASSWORD"

Export credentials

$ az ad sp create-for-rbac --sdk-auth > $HOME/.azure/credentials.json

{
"clientId": "<Service principal ID>",
"clientSecret": "<Service principal secret/password>",
"subscriptionId": "<Subscription associated with the service principal>",
"tenantId": "<The service principal's tenant>",
"activeDirectoryEndpointUrl": "https://login.microsoftonline.com",
"resourceManagerEndpointUrl": "https://management.azure.com/",
"activeDirectoryGraphResourceId": "https://graph.windows.net/",
"sqlManagementEndpointUrl": "https://management.core.windows.net:8443/",
"galleryEndpointUrl": "https://gallery.azure.com/",
"managementEndpointUrl": "https://management.core.windows.net/"

}

Set region in platforms.yaml

azurecloud:
enabled: true
region: West US 2
vm_size: Standard_DS1_v2
storage_sku: standard_lrs
tag: ci

1.22.5 Architecture

The following section outlines the high-level architecture of the integration process.
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Overview

The process flow during a complete end-to-end LXD-backed test.

1. Configuration

• The back end and specific distro releases are verified as supported

• The test or tests that need to be run are determined either by directory or by individual yaml

2. Image Creation

• Acquire the request LXD image

• Install the specified cloud-init package

• Clean the image so that it does not appear to have been booted

• A snapshot of the image is created and reused by all tests

3. Configuration

• For each test, the cloud-config is injected into a copy of the snapshot and booted

• The framework waits for /var/lib/cloud/instance/boot-finished (up to 120 seconds)

• All default commands are ran and output collected

• Any commands the user specified are executed and output collected

4. Verification

• The default commands are checked for any failures, errors, and warnings to validate basic functional-
ity of cloud-init completed successfully

• The user generated unit tests are then ran validating against the collected output

5. Results

• If any failures were detected the test suite returns a failure

• Results can be dumped in yaml format to a specified file using the -r <result_file_name>.
yaml option

Configuring the Test Suite

Most of the behavior of the test suite is configurable through several yaml files. These control the behavior of the
test suite’s platforms, images, and tests. The main config files for platforms, images and test cases are platforms.
yaml, releases.yaml and testcases.yaml.

Config handling

All configurable parts of the test suite use a defaults + overrides system for managing config entries. All base config
items are dictionaries.

Merging is done on a key-by-key basis, with all keys in the default and override represented in the final result. If a
key exists both in the defaults and the overrides, then the behavior depends on the type of data the key refers to. If it
is atomic data or a list, then the overrides will replace the default. If the data is a dictionary then the value will be the
result of merging that dictionary from the default config and that dictionary from the overrides.

Merging is done using the function tests.cloud_tests.config.merge_config, which can be examined
for more detail on config merging behavior.
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The following demonstrates merge behavior:

defaults:
list_item:
- list_entry_1
- list_entry_2

int_item_1: 123
int_item_2: 234
dict_item:
subkey_1: 1
subkey_2: 2
subkey_dict:

subsubkey_1: a
subsubkey_2: b

overrides:
list_item:
- overridden_list_entry

int_item_1: 0
dict_item:
subkey_2: false
subkey_dict:
subsubkey_2: 'new value'

result:
list_item:
- overridden_list_entry

int_item_1: 0
int_item_2: 234
dict_item:
subkey_1: 1
subkey_2: false
subkey_dict:

subsubkey_1: a
subsubkey_2: 'new value'

Image Config

Image configuration is handled in releases.yaml. The image configuration controls how platforms locate and
acquire images, how the platforms should interact with the images, how platforms should detect when an image has
fully booted, any options that are required to set the image up, and features that the image supports.

Since settings for locating an image and interacting with it differ from platform to platform, there are 4 levels of
settings available for images on top of the default image settings. The structure of the image config file is:

default_release_config:
default:

...
<platform>:

...
<platform>:

...

releases:
<release name>:

<default>:
...

(continues on next page)
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<platform>:
...

<platform>:
...

The base config is created from the overall defaults and the overrides for the platform. The overrides are created from
the default config for the image and the platform specific overrides for the image.

System Boot

The test suite must be able to test if a system has fully booted and if cloud-init has finished running, so that running
collect scripts does not race against the target image booting. This is done using the system_ready_script and
cloud_init_ready_script image config keys.

Each of these keys accepts a small bash test statement as a string that must return 0 or 1. Since this test statement will
be added into a larger bash statement it must be a single statement using the [ test syntax.

The default image config provides a system ready script that works for any systemd based image. If the image is not
systemd based, then a different test statement must be provided. The default config also provides a test for whether or
not cloud-init has finished which checks for the file /run/cloud-init/result.json. This should be sufficient
for most systems as writing this file is one of the last things cloud-init does.

The setting boot_timeout controls how long, in seconds, the platform should wait for an image to boot. If the
system ready script has not indicated that the system is fully booted within this time an error will be raised.

Feature Flags

Not all test cases can work on all images due to features the test case requires not being present on that image. If a test
case requires features in an image that are not likely to be present across all distros and platforms that the test suite
supports, then the test can be skipped everywhere it is not supported.

Feature flags, which are names for features supported on some images, but not all that may be required by test cases.
Configuration for feature flags is provided in releases.yaml under the features top level key. The features
config includes a list of all currently defined feature flags, their meanings, and a list of feature groups.

Feature groups are groups of features that many images have in common. For example, the Ubuntu_specific
feature group includes features that should be present across most Ubuntu releases, but may or may not be for other
distros. Feature groups are specified for an image as a list under the key feature_groups.

An image’s feature flags are derived from the features groups that that image has and any feature overrides provided.
Feature overrides can be specified under the features key which accepts a dictionary of {<feature_name>:
true/false} mappings. If a feature is omitted from an image’s feature flags or set to false in the overrides then the
test suite will skip any tests that require that feature when using that image.

Feature flags may be overridden at run time using the --feature-override command line argument. It accepts a
feature flag and value to set in the format <feature name>=true/false. Multiple --feature-override
flags can be used, and will all be applied to all feature flags for images used during a test.

Setup Overrides

If an image requires some of the options for image setup to be used, then it may specify overrides for the command
line arguments passed into setup image. These may be specified as a dictionary under the setup_overrides key.
When an image is set up, the arguments that control how it is set up will be the arguments from the command line,
with any entries in setup_overrides used to override these arguments.
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For example, images that do not come with cloud-init already installed should have setup_overrides:
{upgrade: true} specified so that in the event that no additional setup options are given, cloud-init will be
installed from the image’s repos before running tests. Note that if other options such as --deb are passed in on the
command line, these will still work as expected, since apt’s policy for cloud-init would prefer the locally installed deb
over an older version from the repos.

Platform Specific Options

There are many platform specific options in image configuration that allow platforms to locate images and that control
additional setup that the platform may have to do to make the image usable. For information on how these work,
please consult the documentation for that platform in the integration testing suite and the releases.yaml file for
examples.

Error Handling

The test suite makes an attempt to run as many tests as possible even in the event of some failing so that automated
runs collect as much data as possible. In the event that something goes wrong while setting up for or running a test,
the test suite will attempt to continue running any tests which have not been affected by the error.

For example, if the test suite was told to run tests on one platform for two releases and an error occurred setting up the
first image, all tests for that image would be skipped, and the test suite would continue to set up the second image and
run tests on it. Or, if the system does not start properly for one test case out of many to run on that image, that test
case will be skipped and the next one will be run.

Note that if any errors occur, the test suite will record the failure and where it occurred in the result data and write it
out to the specified result file.

Results

The test suite generates result data that includes how long each stage of the test suite took and which parts were and
were not successful. This data is dumped to the log after the collect and verify stages, and may also be written out in
yaml format to a file. If part of the setup failed, the traceback for the failure and the error message will be included in
the result file. If a test verifier finds a problem with the collected data from a test run, the class, test function and test
will be recorded in the result data.

Exit Codes

The test suite counts how many errors occur throughout a run. The exit code after a run is the number of errors that
occurred. If the exit code is non-zero then something is wrong either with the test suite, the configuration for an image,
a test case, or cloud-init itself.

Note that the exit code does not always directly correspond to the number of failed test cases, since in some cases, a
single error during image setup can mean that several test cases are not run. If run is used, then the exit code will be
the sum of the number of errors in the collect and verify stages.

Data Dir

When using run, the collected data is written into a temporary directory. In the event that all tests pass, this directory
is deleted, but if a test fails or an error occurs, this data will be left in place, and a message will be written to the log
giving the location of the data.
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