cloud-init
Release 24.1.3

unknown

Apr 26, 2024

1 Having trouble? We would like to help!

2 Project and community

2.1 Tutorials
22 How-toguides,
23 Explanation. 0oL
24 Reference
2.5 How to contribute to cloud-init
2.6 Contributetothecode
2.7 Contributetoourdocs
2.8 Thecloud-init summit

Python Module Index

Index

CONTENTS

cloud-init, Release 24.1.3

Cloud-init is the industry standard multi-distribution method for cross-platform cloud instance initialisation. It is
supported across all major public cloud providers, provisioning systems for private cloud infrastructure, and bare-metal
installations.

During boot, cloud-init identifies the cloud it is running on and initialises the system accordingly. Cloud instances
will automatically be provisioned during first boot with networking, storage, SSH keys, packages and various other
system aspects already configured.

Cloud-init provides the necessary glue between launching a cloud instance and connecting to it so that it works as
expected.

For cloud users, cloud-init provides no-install first-boot configuration management of a cloud instance. For cloud
providers, it provides instance setup that can be integrated with your cloud.

If you would like to read more about what cloud-init is, what it does and how it works, check out our high-level
introduction to the tool.

Tutorials Get started - a hands-on introduction to cloud-init for new users
How-to guides Step-by-step guides covering key operations and common tasks
Reference Technical information - specifications, APIs, architecture

Explanation Discussion and clarification of key topics

CONTENTS 1

cloud-init, Release 24.1.3

2 CONTENTS

CHAPTER
ONE

HAVING TROUBLE? WE WOULD LIKE TO HELP!

Check out our tutorials if you’re new to cloud-init
Try the FAQ for answers to some common questions
You can also search the cloud-init mailing list archive

Find a bug? Report bugs on GitHub Issues

https://lists.launchpad.net/cloud-init/
https://github.com/canonical/cloud-init/issues

cloud-init, Release 24.1.3

4 Chapter 1. Having trouble? We would like to help!

CHAPTER
TWO

PROJECT AND COMMUNITY

Cloud-init is an open source project that warmly welcomes community projects, contributions, suggestions, fixes
and constructive feedback.

* Read our Code of Conduct

* Ask questions in the #cloud-init IRC channel on Libera

* Follow announcements or ask a question on the cloud-init Discourse forum
¢ Join the cloud-init mailing list

* Contribute on GitHub

¢ Release schedule

2.1 Tutorials

This section contains step-by-step tutorials to help you get started with cloud-init. We hope our tutorials make as
few assumptions as possible and are accessible to anyone with an interest in cloud-init. They should be a great place
to start learning about cloud-init, how it works, and what it’s capable of.

2.1.1 Core tutorial

This tutorial, which we recommend if you are completely new to cloud-init, uses the QEMU emulator to introduce
you to all of the key concepts, tools, processes and operations that you will need to get started.

Core tutorial with QEMU

QEMU tutorial debugging

You may wish to test out the commands in this tutorial as a script to check for copy-paste mistakes.

If you successfully launched the virtual machine, but couldn’t log in, there are a few places to check to debug your
setup.

To debug, answer the following questions:

https://ubuntu.com/community/code-of-conduct
https://kiwiirc.com/nextclient/irc.libera.chat/cloud-init
https://discourse.ubuntu.com/c/server/cloud-init/
https://launchpad.net/~cloud-init
https://discourse.ubuntu.com/t/cloud-init-release-schedule/32244

cloud-init, Release 24.1.3

Did cloud-init discover the IMDS webserver?

The webserver should print a message in the terminal for each request it receives. If it didn’t print out any messages
when the virtual machine booted, then cloud-init was unable to obtain the config. Make sure that the webserver can
be locally accessed using curl or wget.

$ curl 0.0.0.0:8000/user-data
$ curl 0.0.0.0:8000/meta-data
$ curl 0.0.0.0:8000/vendor-data

Did the IMDS webserver serve the expected files?

If the webserver prints out 404 errors when launching QEMU, then check that you started the server in the temp
directory.

Were the configurations inside the file correct?

When launching QEMU, if the webserver shows that it succeeded in serving user-data, meta-data and
vendor-data, but you cannot log in, then you may have provided incorrect cloud-config files. If you can mount a
copy of the virtual machine’s filesystem locally to inspect the logs, it should be possible to get clues about what went
wrong.

In this tutorial, we will launch an Ubuntu cloud image in a virtual machine that uses cloud-init to pre-configure the
system during boot.

The goal of this tutorial is to provide a minimal demonstration of cloud-init, which you can then use as a development
environment to test your cloud-init configurations locally before launching to the cloud.

Why QEMU?

QEMU is a cross-platform emulator capable of running performant virtual machines. QEMU is used at the core of a
broad range of production operating system deployments and open source software projects (including libvirt, LXD,
and vagrant) and is capable of running Windows, Linux, and Unix guest operating systems. While QEMU is flexibile
and feature-rich, we are using it because of the broad support it has due to its broad adoption and ability to run on
*nix-derived operating systems.

How to use this tutorial

In this tutorial, the commands in each code block can be copied and pasted directly into the terminal. Omit the prompt
($) before each command, or use the “copy code” button on the right-hand side of the block, which will copy the
command for you without the prompt.

Each code block is preceded by a description of what the command does, and followed by an example of the type of
output you should expect to see.

6 Chapter 2. Project and community

https://www.qemu.org

cloud-init, Release 24.1.3

Install QEMU

[$ sudo apt install gemu-system-x86

If you are not using Ubuntu, you can visit QEMU’s install instructions for additional information.

Create a temporary directory

This directory will store our cloud image and configuration files for user data, metadata, and vendor data.

You should run all commands from this temporary directory. If you run the commands from anywhere else, your virtual
machine will not be configured.

Let’s create a temporary directory and make it our current working directory with cd:

$ mkdir temp
$ cd temp

Download a cloud image

Cloud images typically come with cloud-init pre-installed and configured to run on first boot. You will not need to
worry about installing cloud-init for now, since we are not manually creating our own image in this tutorial.

In our case, we want to select the latest Ubuntu LTS. Let’s download the server image using wget:

[$ wget https://cloud-images.ubuntu.com/jammy/current/jammy-server-cloudimg-amd64.img

Define our user data

Now we need to create our user-data file. This user data cloud-config sets the password of the default user, and sets
that password to never expire. For more details you can refer to the Set Passwords module page.

Run the following command, which creates a file named user-data containing our configuration data.

$ cat << EOF > user-data
#cloud-config
password: password
chpasswd:

expire: False

EOF

2.1. Tutorials 7

https://www.qemu.org/download/#linux
https://wiki.ubuntu.com/Releases

cloud-init, Release 24.1.3

What is user data?

Before moving forward, let’s inspect our user-data file.

[$ cat user-data

You should see the following contents:

#cloud-config
password: password
chpasswd:

expire: False

The first line starts with #cloud-config, which tells cloud-init what type of user data is in the config. Cloud-config
is a YAML-based configuration type that tells cloud-init how to configure the virtual machine instance. Multiple
different format types are supported by cloud-init. For more information, see the documentation describing different
formats.

The second line, password: password, as per the Users and Groups module docs, sets the default user’s password
to password.

The third and fourth lines direct cloud-init to not require a password reset on first login.

Define our metadata

Now let’s run the following command, which creates a file named meta-data containing configuration data.

$ cat << EOF > meta-data
instance-id: someid/somehostname

EOF

Define our vendor data

Now we will create the empty file vendor-data in our temporary directory. This will speed up the retry wait time.

[$ touch vendor-data

Start an ad hoc IMDS webserver

Open up a second terminal window, change to your temporary directory and then start the built-in Python webserver:

$ cd temp
$ python3 -m http.server --directory .

8 Chapter 2. Project and community

cloud-init, Release 24.1.3

What is an IMDS?

Instance Metadata Service (IMDS) is a service provided by most cloud providers as a means of providing information
to virtual machine instances. This service is used by cloud providers to expose information to a virtual machine.
This service is used for many different things, and is the primary mechanism for some clouds to expose cloud-init
configuration data to the instance.

How does cloud-init use the IMDS?

The IMDS uses a private http webserver to provide metadata to each operating system instance. During early boot,
cloud-init sets up network access and queries this webserver to gather configuration data. This allows cloud-init
to configure your operating system while it boots.

In this tutorial we are emulating this workflow using QEMU and a simple Python webserver. This workflow is suitable
for developing and testing cloud-init configurations prior to cloud deployments.

Launch a virtual machine with our user data

Switch back to your original terminal, and run the following command so we can launch our virtual machine. By
default, QEMU will print the kernel logs and systemd logs to the terminal while the operating system boots. This may
take a few moments to complete.

$ gemu-system-x86_64
-net nic
-net user
-machine accel=kvm:tcg
-cpu host
-m 512
-nographic
-hda jammy-server-cloudimg-amd64.img
-smbios type=1,serial=ds="nocloud;s=http://10.0.2.2:8000/"'

A A A

Note: If the output stopped scrolling but you don’t see a prompt yet, press Enter to get to the login prompt.

How is QEMU configured for cloud-init?

When launching QEMU, our machine configuration is specified on the command line. Many things may be configured:
memory size, graphical output, networking information, hard drives and more.

Let us examine the final two lines of our previous command. The first of them, -hda
jammy-server-cloudimg-amd64.img, tells QEMU to use the cloud image as a virtual hard drive. This will
cause the virtual machine to boot Ubuntu, which already has cloud-init installed.

The second line tells cloud-init where it can find user data, using the NoCloud datasource. During boot,
cloud-init checks the SMBIOS serial number for ds=nocloud. If found, cloud-init will use the specified URL to
source its user data config files.

In this case, we use the default gateway of the virtual machine (10.0.2.2) and default port number of the Python
webserver (8000), so that cloud-init will, inside the virtual machine, query the server running on host.

2.1. Tutorials 9

cloud-init, Release 24.1.3

Verify that cloud-init ran successfully

After launching the virtual machine, we should be able to connect to our instance using the default distro username.
In this case the default username is ubuntu and the password we configured is password.
If you can log in using the configured password, it worked!

If you couldn’t log in, see this page for debug information.

Check cloud-init status

Run the following command, which will allow us to check if cloud-init has finished running:

[$ cloud-init status --wait

If you see status: done in the output, it succeeded!

If you see a failed status, you’ll want to check /var/log/cloud-init.log for warning/error messages.

Tear down

In our main terminal, let’s exit the QEMU shell using ctrl-a x (that’s ctrl and a simultaneously, followed by x).

In the second terminal, where the Python webserver is running, we can stop the server using (ctrl-c).

What’s next?

In this tutorial, we configured the default user’s password and ran cloud-init inside our QEMU virtual machine.

The full list of modules available can be found in our modules documentation. The documentation for each module
contains examples of how to use it.

You can also head over to the examples page for examples of more common use cases.

2.1.2 Quick-start tutorial

This tutorial is recommended if you have some familiarity with cloud-init or the concepts around it, and are looking
to get started as quickly as possible. Here, you will use an LXD container to deploy a cloud-init user data script.

Quick-start tutorial with LXD

In this tutorial, we will create our first cloud-init user data script and deploy it into an LXD container.

10 Chapter 2. Project and community

https://ubuntu.com/lxd

cloud-init, Release 24.1.3

Why LXD?

We’ll be using LXD for this tutorial because it provides first class support for cloud-init user data, as well as systemd
support. Because it is container based, it allows us to quickly test and iterate upon our user data definition.

How to use this tutorial

In this tutorial, the commands in each code block can be copied and pasted directly into the terminal. Omit the prompt
($) before each command, or use the “copy code” button on the right-hand side of the block, which will copy the
command for you without the prompt.

Each code block is preceded by a description of what the command does, and followed by an example of the type of
output you should expect to see.

Install and initialise LXD

If you already have LXD set up, you can skip this section. Otherwise, let’s install LXD:

[$ sudo snap install 1xd

If you don’t have snap, you can install LXD using one of the other installation options.

Now we need to initialise LXD. The minimal configuration will be enough for the purposes of this tutorial. If you need
to, you can always change the configuration at a later time.

[s Ixd init --minsmal]

Define our user data

Now that LXD is set up, we can define our user data. Create the following file on your local filesystem at /tmp/
my-user-data:

#cloud-config
runcmd :
- echo 'Hello, World!' > /var/tmp/hello-world.txt

Here, we are defining our cloud-init user data in the #cloud-config format, using the runcmd module to define a
command to run. When applied, it will write Hello, World! to /var/tmp/hello-world.txt (as we shall see
later!).

Launch a LXD container with our user data

Now that we have LXD set up and our user data defined, we can launch an instance with our user data:

[$ 1xc launch ubuntu:focal my-test --config=user.user-data="$(cat /tmp/my-user-data)"

2.1. Tutorials 11

https://documentation.ubuntu.com/lxd/en/latest/installing/#other-installation-options

cloud-init, Release 24.1.3

Verify that cloud-init ran successfully

After launching the container, we should be able to connect to our instance using:

[$ 1xc shell my-test

You should now be in a shell inside the LXD instance.

Before validating the user data, let’s wait for cloud-init to complete successfully:

[$ cloud-init status --wait

Which provides the following output:

[status : done

Verify our user data

Now we know that cloud-init has been successfully run, we can verify that it received the expected user data we

provided earlier:

[$ cloud-init query userdata

Which should print the following to the terminal window:

#cloud-config
runcmd:
- echo 'Hello, World!' > /var/tmp/hello-world.txt

We can also assert the user data we provided is a valid cloud-config:

[$ cloud-init schema --system --annotate

Which should print the following:

[Valid schema user-data

Finally, let us verify that our user data was applied successfully:

[$ cat /var/tmp/hello-world.txt

Which should then print:

[Hello, World!

We can see that cloud-init has received and consumed our user data successfully!

12 Chapter 2.

Project and community

cloud-init, Release 24.1.3

Tear down

Exit the container shell (by typing exit or pressing ctrl-d). Once we have exited the container, we can stop the
container using:

[$ 1xc stop my-test

We can then remove the container completely using:

[$ 1xc rm my-test

What’s next?

In this tutorial, we used the runcmd module to execute a shell command. The full list of modules available can be found
in our modules documentation. Each module contains examples of how to use it.

You can also head over to the examples page for examples of more common use cases.

2.1.3 WSL tutorial

This tutorial is for learning to use cloud-init within a WSL environment. You will use a cloud-init user data script
to customize a WSL instance.

WSL Tutorial
In this tutorial, we will customize a Windows Subsystem for Linux (WSL) instance using cloud-init on Ubuntu.
How to use this tutorial

In this tutorial, the commands in each code block can be copied and pasted directly into a PowerShell Window . Omit
the prompt before each command, or use the “copy code” button on the right-hand side of the block, which will copy
the command for you without the prompt.

Prerequisites

This tutorial assumes you are running within aWindows 11 orWindows Server 2022 environment. If wsl is already
installed, you must be running version 2. You can check your version of ws1 by running the following command:

[PS> wsl --version J

Example output:

WSL version: 2.1.5.0

Kernel version: 5.15.146.1

WSLg version: 1.0.60

MSRDC version: 1.2.5105

Direct3D version: 1.611.1-81528511

DXCore version: 10.0.25131.1002-220531-1700.rs-onecore-base2-hyp
Windows version: 10.0.20348.2402

2.1. Tutorials 13

cloud-init, Release 24.1.3

If running this tutorial within a virtualized environment (including in the cloud), ensure that nested virtualization is
enabled.

Install WSL

Note: If you have already installed WSL, you can skip this section.

[PS> wsl --install

Example output:

Installing: Virtual Machine Platform

Virtual Machine Platform has been installed.

Installing: Windows Subsystem for Linux

Windows Subsystem for Linux has been installed.

Installing: Ubuntu

Ubuntu has been installed.

The requested operation is successful. Changes will not be effective until the system is..
—rebooted.

Reboot the system when prompted.

Obtain the Ubuntu WSL image

Ubuntu 24.04, which is still in development, is the first Ubuntu version to support cloud-init in WSL, so that is the
image that we’ll use.

We have two options to obtain the Ubuntu 24.04 WSL image: the Microsoft Store and the Ubuntu image server.

Option #1: The Microsoft Store

If you have access to the Microsoft Store, you can download the Ubuntu 24.04 WSL image from within the app.
Click on the “Get” button to download the image.

Once the image has downloaded, do NOT click open as that will start the instance before we have defined our cloud-init
user data used to customize the instance.

Once the image has downloaded, you can verify that it is available by running the following command:

[Ps> wsl --list

Example output:

Windows Subsystem for Linux Distributions:
Ubuntu (Default)
Ubuntu-Preview

It should show Ubuntu-Preview in the list of available WSL instances.

14 Chapter 2. Project and community

https://techcommunity.microsoft.com/t5/itops-talk-blog/how-to-setup-nested-virtualization-for-azure-vm-vhd/ba-p/1115338
https://docs.microsoft.com/en-us/virtualization/hyper-v-on-windows/user-guide/nested-virtualization
https://apps.microsoft.com/detail/9p7bdvkvnxz6

cloud-init, Release 24.1.3

Option #2: The Ubuntu image server

If the Microsoft Store is not an option, we can instead download the Ubuntu 24.04 WSL image from the Ubuntu image
server.

Create a directory under the user’s home directory to store the WSL image and install data.

[PS> mkdir ~\wsl-images

Download the Ubuntu 24.04 WSL image.

PS> Invoke-WebRequest -Uri https://cloud-images.ubuntu.com/wsl/noble/current/ubuntu-
—.noble-wsl-amd64-wsl.rootfs.tar.gz -OutFile wsl-images\ubuntu-noble-wsl-amd64-wsl.
—rootfs.tar.gz

Import the image into WSL storing it in the ws1-images directory.

PS> wsl --import Ubuntu-Preview wsl-images .\wsl-images\ubuntu-noble-wsl-amd64-wsl.
—rootfs.tar.gz

Example output:

Import in progress, this may take a few minutes.
The operation completed successfully.

Create our user data

User data is the primary way for a user to customize a cloud-init instance. Open Notepad and paste the following:

#cloud-config
write_files:
- content: |

path: /var/tmp/hello-world.txt
permissions: '0777'

Save the file to SUSERPROFILE%\ .cloud-init\Ubuntu-Preview.user-data.

For example, if your username is me, the path would be C: \Users\me\.cloud-init\Ubuntu-Preview.user-data.
Ensure that the file is saved with the .user-data extension and not as a . txt file.

Note: We are creating user data that is tied to the instance we just created, but by changing the filename, we can create
user data that applies to multiple or all WSL instances. See WSL Datasource reference page for more information.

2.1. Tutorials 15

https://cloud-images.ubuntu.com/wsl/
https://cloud-images.ubuntu.com/wsl/

cloud-init, Release 24.1.3

What is user data?

Before moving forward, let’s inspect our user-data file.

We created the following contents:

#cloud-config
write_files:
- content: |

path: /var/tmp/hello-world.txt
permissions: '0770'

The first line starts with #cloud-config, which tells cloud-init what type of user data is in the config. Cloud-config is
a YAML.-based configuration type that tells cloud-init how to configure the instance being created. Multiple different
format types are supported by cloud-init. For more information, see the documentation describing different formats.

The remaining lines, as per the Write Files module docs, creates a file /var/tmp/hello-world. txt with the content
Hello from cloud-init and permissions allowing anybody on the system to read or write the file.

Start the Ubuntu WSL instance

[PS> wsl --distribution Ubuntu-Preview

The Ubuntu WSL instance will start, and you may be prompted for a username and password.

Installing, this may take a few minutes...

Please create a default UNIX user account. The username does not need to match your.
—Windows username.

For more information visit: https://aka.ms/wslusers

Enter new UNIX username:

New password:

Retype new password:

Once the credentials have been entered, you should see a welcome screen similar to the following:

Welcome to Ubuntu Noble Numbat (development branch) (GNU/Linux 5.15.146.1-microsoft-
—.standard-WSL2 x86_64)

* Documentation: https://help.ubuntu.com
* Management : https://landscape.canonical.com

* Support: https://ubuntu.com/pro

System information as of Mon Apr 22 21:06:49 UTC 2024

System load: 0.08 Processes: 51
Usage of /: 0.1% of 1006.85GB Users logged in: 0
Memory usage: 4% IPv4 address for eth®: 172.29.240.255

Swap usage: 0%

This message is shown once a day. To disable it please create the
/root/.hushlogin file.
root@machine: /mnt/c/Users/me#

16 Chapter 2. Project and community

cloud-init, Release 24.1.3

You should now be in a shell inside the WSL instance.

Verify that cloud-init ran successfully

Before validating the user data, let’s wait for cloud-init to complete successfully:

[$ cloud-init status --wait J

Which provides the following output:

[status: done]

Now we can now see that cloud-init has detected that we running in WSL:

[$ cloud-id]

Which provides the following output:

[wsl J

Verify our user data

Now we know that cloud-init has been successfully run, we can verify that it received the expected user data we
provided earlier:

[$ cloud-init query userdata]

Which should print the following to the terminal window:

#cloud-config
write_files:
- content: |

path: /var/tmp/hello-world.txt
permissions: '0770'

We can also assert the user data we provided is a valid cloud-config:

[$ cloud-init schema --system --annotate J

Which should print the following:

[Valid schema user-data J

Finally, let us verify that our user data was applied successfully:

[$ cat /var/tmp/hello-world.txt]
Which should then print:
[Hello from cloud-init]

We can see that cloud-init has received and consumed our user data successfully!

2.1. Tutorials 17

cloud-init, Release 24.1.3

What’s next?

In this tutorial, we used the Write Files module to write a file to our WSL instance. The full list of modules available
can be found in our modules documentation. Each module contains examples of how to use it.

You can also head over to the examples page for examples of more common use cases.

Cloud-init’s WSL reference documentation can be found on the WSL Datasource reference page.

2.2 How-to guides

If you have a specific goal in mind and are already familiar with the basics of cloud-init, our how-to guides cover
some of the more common operations and tasks that you may need to complete.

They will help you to achieve a particular end result, but may require you to understand and adapt the steps to fit your
specific requirements.

2.21 Howdoll...?

How to run cloud-init locally
It’s very likely that you will want to test cloud-init locally before deploying it to the cloud. Fortunately, there are
several different virtual machine (VM) and container tools that are ideal for this sort of local testing.

e boot cloud-init with QEMU

* boot cloud-init with LXD

e boot cloud-init with Libvirt

* boot cloud-init with Multipass

QEMU

QEMU is a general purpose computer hardware emulator that is capable of running virtual machines with hardware
acceleration as well as emulating the instruction sets of different architectures than the host that you are running on.

The NoCloud datasource allows users to provide their own user data, metadata, or network configuration directly to an
instance without running a network service. This is helpful for launching local cloud images with QEMU.

Create your configuration

We will leave the network-config and meta-data files empty, but populate user-data with a cloud-init configu-
ration. You may edit the network-config and meta-data files if you have a config to provide.

$ touch network-config
$ touch meta-data

$ cat >user-data <<EOF
#cloud-config
password: password
chpasswd:

(continues on next page)

18 Chapter 2. Project and community

https://www.qemu.org/

cloud-init, Release 24.1.3

(continued from previous page)
expire: False

ssh_pwauth: True
EOF

Create an ISO disk

This disk is used to pass configuration to cloud-init. Create it with the genisoimage command:

genisoimage \
-output seed.img \
-volid cidata -rational-rock -joliet \
user-data meta-data network-config

Download a cloud image

Download an Ubuntu image to run:

[wget https://cloud-images.ubuntu.com/jammy/current/jammy-server-cloudimg-amd64.img

Boot the image with the ISO attached

Boot the cloud image with our configuration, seed. img, to QEMU:

$ gemu-system-x86_64 -m 1024 -net nic -net user \
-hda jammy-server-cloudimg-amd64.img \
-hdb seed.img

The now-booted image will allow for login using the password provided above.

For additional configuration, users can provide much more detailed configuration in the empty network-config and
meta-data files.

Note: See the Networking config Version 2 page for details on the format and config of network configuration. To
learn more about the possible values for metadata, check out the NoCloud page.

LXD

LXD offers a streamlined user experience for using Linux system containers. With LXD, the following command
initialises a container with user data:

$ 1xc init ubuntu-daily:jammy test-container
$ 1xc config set test-container user.user-data - < userdata.yaml
$ 1lxc start test-container

To avoid the extra commands this can also be done at launch:

2.2. How-to guides 19

https://ubuntu.com/lxd

cloud-init, Release 24.1.3

$ 1xc launch ubuntu-daily:jammy test-container --config-user.user-data="$(cat userdata.
—yaml)"

Finally, a profile can be set up with the specific data if you need to launch this multiple times:

$ 1xc profile create dev-user-data
$ 1xc profile set dev-user-data user.user-data - < cloud-init-config.yaml
$ 1xc launch ubuntu-daily:jammy test-container -p default -p dev-user-data

LXD configuration types

The above examples all show how to pass user data. To pass other types of configuration data use the configuration
options specified below:

Data Configuration option
user data cloud-init.user-data
vendor data cloud-init.vendor-data

network config cloud-init.network-config

See the LXD Instance Configuration docs for more info about configuration values or the LXD Custom Network Con-
figuration document for more about custom network config.

Libvirt

Libvirt is a tool for managing virtual machines and containers.

Create your configuration

We will leave the network-config and meta-data files empty, but populate user-data with a cloud-init configuration.
You may edit the network-config and meta-data files if you have a config to provide.

$ touch network-config
$ touch meta-data
$ cat >user-data <<EOF
#cloud-config
password: password
chpasswd:

expire: False
ssh_pwauth: True
EOF

20 Chapter 2. Project and community

https://documentation.ubuntu.com/lxd/en/latest/instances/
https://documentation.ubuntu.com/lxd/en/latest/cloud-init/
https://documentation.ubuntu.com/lxd/en/latest/cloud-init/
https://libvirt.org/

cloud-init, Release 24.1.3

Download a cloud image

Download an Ubuntu image to run:

[wget https://cloud-images.ubuntu.com/jammy/current/jammy-server-cloudimg-amd64.img]

Create an instance

virt-install --name cloud-init-001 --memory 4000 --noreboot \
--os-variant detect=on,name=ubuntujammy \
--disk=size=10,backing_store="$(pwd)/jammy-server-cloudimg-amd64.img" \
--cloud-init user-data="$(pwd) /user-data,meta-data=$(pwd) /meta-data,network-config=
—$(pwd) /network-config"

Multipass

Multipass is a cross-platform tool for launching Ubuntu VMs across Linux, Windows, and macOS.

When a user launches a Multipass VM, user data can be passed by adding the --cloud-init flag and the appropriate
YAML file containing the user data:

[$ multipass launch bionic --name test-vm --cloud-init userdata.yaml]

Multipass will validate the user-data cloud-config file before attempting to start the VM. This breaks all cloud-init
configuration formats except user data cloud-config.

How to re-run cloud-init

How to fully re-run cloud-init

Most cloud-init configuration is only applied to the system once. This means that simply rebooting the system will
only re-run a subset of cloud-init. Cloud-init provides two different options for re-running cloud-init for debugging
purposes.

Warning: Making cloud-init run again may be destructive and must never be done on a production system.
Artefacts such as ssh keys or passwords may be overwritten.

Remove the logs and cache, then reboot

This method will reboot the system as if cloud-init never ran. This command does not remove all cloud-init artefacts
from previous runs of cloud-init, but it will clean enough artefacts to allow cloud-init to think that it hasn’t run yet. It
will then re-run after a reboot.

[cloud—init clean --logs --reboot]

2.2. How-to guides 21

https://multipass.run/

cloud-init, Release 24.1.3

Run a single cloud-init module

If you are using user data cloud-config format, you might wish to re-run just a single configuration module. Cloud-init
provides the ability to run a single module in isolation and separately from boot. This command is:

[$ sudo cloud-init single --name cc_ssh --frequency always

Example output:

Generating public/private ed25519 key pair

This subcommand is not called by the init system. It can be called manually to load the configured datasource and run
a single cloud-config module once, using the cached user data and metadata after the instance has booted.

Note: Each cloud-config module has a module FREQUENCY configured: PER_INSTANCE, PER_BOOT, PER_ONCE
or PER_ALWAYS. When a module is run by cloud-init, it stores a semaphore file in /var/lib/cloud/instance/
sem/config_<module_name>.<frequency> which marks when the module last successfully ran. Presence of this
semaphore file prevents a module from running again if it has already been run.

Inspect cloud-init.log for output of what operations were performed as a result.

How to partially re-run cloud-init

If the behavior you are testing runs on every boot, there are a couple of ways to test this behavior.

Manually run cloud-init stages

Note that during normal boot of cloud-init, the init system runs these stages at specific points during boot. This means
that running the code manually after booting the system may cause the code to interact with the system in a different
way than it does while it boots.

cloud-init init --local
cloud-init init

cloud-init modules --mode=config
cloud-init modules --mode=final

Reboot the instance

Rebooting the instance will take a little bit longer, however it will make cloud-init stages run at the correct times during
boot, so it will behave more correctly.

{reboot -h now

22 Chapter 2. Project and community

cloud-init, Release 24.1.3

How to change a module’s run frequency

You may want to change the default frequency at which a module runs, for example, to make the module run on every
boot.
To override the default frequency, you will need to modify the module list in /etc/cloud/cloud.cfg:

1. Change the module from a string (default) to a list.

2. Set the first list item to the module name and the second item to the frequency.

Example

The following example demonstrates how to log boot times to a file every boot.

Update /etc/cloud/cloud.cfg:

cloud_final_modules:

list shortened for brevity
- [phone_home, always]
- final_message
- power_state_change

Then your user data could then be:

#cloud-config

phone_home:
url: http://example.com/$INSTANCE_ID/
post: all

How to validate user data cloud config

The two most common issues with cloud config user data are:
1. Incorrectly formatted YAML

2. The first line does not start with #cloud-config

Static user data validation

Cloud-init is capable of validating cloud config user data directly from its datasource (i.e. on a running cloud instance).
To do this, you can run:

[sudo cloud-init schema --system --annotate]

Or, to test YAML in a specific file:

[cloud—init schema -c test.yml --annotate

Example output:

$ cloud-init schema --config-file=test.yaml --annotate
#cloud-config

users:
(continues on next page)

2.2. How-to guides 23

cloud-init, Release 24.1.3

(continued from previous page)
- name: holmanb # E1,E2,E3
gecos: Brett Holman
primary_group: holmanb
lock_passwd: false
invalid_key: true

Errors: —-—————-—-—————-

El1: Additional properties are not allowed ('invalid_key' was unexpected)

E2: {'name': 'holmanb', 'gecos': 'Brett Holman', 'primary_group': 'holmanb', 'lock_
—passwd': False, 'invalid_key': True} is not of type 'array'

E3: {'name': 'holmanb', 'gecos': 'Brett Holman', 'primary_group': 'holmanb', 'lock_

—passwd': False, 'invalid_key': True} is not of type 'string'

Debugging

If your user-data cloud config is correct according to the cloud-init schema command, but you are still having issues,
then please refer to our debugging guide.

To report any bugs you find, refer to this guide.

How to debug cloud-init
There are several cloud-init failure modes that one may need to debug. Debugging is specific to the scenario, but the
starting points are often similar:

* [cannot log in

* Cloud-init did not run

* Cloud-init did the unexpected

* Cloud-init never finished running

I can’t log in to my instance

One of the more challenging scenarios to debug is when you don’t have shell access to your instance. You have a few
options:

1. Acquire log messages from the serial console and check for any errors.

2. To access instances without SSH available, create a user with password access (using the user-data) and log in
via the cloud serial port console. This only works if cc_users_groups successfully ran.

3. Try running the same user-data locally, such as in one of the tutorials. Use LXD or QEMU locally to get a shell
or logs then debug with these steps.

4. Try copying the image to your local system, mount the filesystem locally and inspect the image logs for clues.

24 Chapter 2. Project and community

cloud-init, Release 24.1.3

Cloud-init did not run

1. Check the output of cloud-init status --long
* what is the value of the 'extended_status' key?
* what is the value of the 'boot_status_code' key?
See our reported status explanation for more information on the status.
2. Check the contents of /run/cloud-init/ds-identify.log

This log file is used when the platform that cloud-init is running on is detected. This stage enables or disables
cloud-init.

3. Check the status of the services

systemctl status cloud-init-local.service cloud-init.service\
cloud-config.service cloud-final.service

Cloud-init may have started to run, but not completed. This shows how many, and which, cloud-init stages
completed.

Cloud-init ran, but didn’t do what | want it to

1. If you are using cloud-init’s user data cloud config, make sure to validate your user data cloud config
2. Check for errors in cloud-init status --long
* what is the value of the 'errors"' key?
» what is the value of the 'recoverable_errors' key?
See our guide on exported errors for more information on these exported errors.
3. For more context on errors, check the logs files:
e /var/log/cloud-init.log
e /var/log/cloud-init-output.log
Identify errors in the logs and the lines preceding these errors.
Ask yourself:
¢ According to the log files, what went wrong?
* How does the cloud-init error relate to the configuration provided to this instance?

e What does the documentation say about the parts of the configuration that relate to this error? Did a
configuration module fail?

e What failure state is cloud-init in?

2.2. How-to guides 25

cloud-init, Release 24.1.3

Cloud-init never finished running

There are many reasons why cloud-init may fail to complete. Some reasons are internal to cloud-init, but in other cases,
cloud-init failure to complete may be a symptom of failure in other components of the system, or the result of a user
configuration.

External reasons

* Failed dependent services in the boot.
* Bugs in the kernel or drivers.

* Bugs in external userspace tools that are called by cloud-init.

Internal reasons

¢ A command in bootcmd or runcmd that never completes (e.g., running cloud-init status --wait will
deadlock).

» Configurations that disable timeouts or set extremely high timeout values.

To start debugging

1. Check dmesg for errors:

[dmesg -T | grep -i -e warning -e error -e fatal -e exception

2. Investigate other systemd services that failed

[systemctl --failed

3. Check the output of cloud-init status --long
* what is the value of the 'extended_status' key?
* what is the value of the '"boot_status_code' key?
See our guide on exported errors for more information on these exported errors.

4. Identify which cloud-init boot stage is currently running:

systemctl status cloud-init-local.service cloud-init.service\
cloud-config.service cloud-final.service

E—

Cloud-init may have started to run, but not completed. This shows how many, and which, cloud-init stages
completed.

5. Use the PID of the running service to find all running subprocesses. Any running process that was spawned by
cloud-init may be blocking cloud-init from continuing.

[pstree <PID>

Ask yourself:

* Which process is still running?

26 Chapter 2. Project and community

cloud-init, Release 24.1.3

* Why is this process still running?
* How does this process relate to the configuration that I provided?
6. For more context on errors, check the logs files:

e /var/log/cloud-init.log
e /var/log/cloud-init-output.log

Identify errors in the logs and the lines preceding these errors.

Ask yourself:
* According to the log files, what went wrong?
* How does the cloud-init error relate to the configuration provided to this instance?

* What does the documentation say about the parts of the configuration that relate to this error?

Reported status

When interacting with cloud-init, it may be useful to know whether cloud-init has run, or is currently running. Since
cloud-init consists of several different stages, interacting directly with your init system might yield different reported
results than one might expect, unless one has intimate knowledge of cloud-init’s hoot stages.

Cloud-init status

To simplify this, cloud-init provides a tool, cloud-init status to report the current status of cloud-init.

$ cloud-init status
"done"

Cloud-init’s extended status

Cloud-init is also capable of reporting when cloud-init has not been able to complete the tasks described in a user
configuration. If cloud-init has experienced issues while running, the extended status will include the word “degraded”
in its status.

Cloud-init can report its internal state via the status --format json subcommand under the extended_status
key.

$ cloud-init status --format json
{
"boot_status_code": "enabled-by-generator",
"datasource": "1xd",
"detail": "DataSourceLXD",
"errors": [],
"extended_status": "degraded done",
"init": {
"errors": [],
"finished": 1708550839.1837437,
"recoverable_errors": {},
"start": 1708550838.6881146
Ve

(continues on next page)

2.2. How-to guides 27

cloud-init, Release 24.1.3

(continued from previous page)
"init-local": {
"errors": [],
"finished": 1708550838.0196638,
"recoverable_errors": {},
"start": 1708550837.7719762
L
"last_update": "Wed, 21 Feb 2024 21:27:24 +0000",
"modules-config": {
"errors": [],
"finished": 1708550843.8297973,
"recoverable_errors": {
"WARNING": [
"Removing /etc/apt/sources.list to favor deb822 source format"
]
i
"start": 1708550843.7163966
I
"modules-final": {
"errors": [],
"finished": 1708550844.0884337,
"recoverable_errors": {},
"start": 1708550844.029698

I

"recoverable_errors": {
"WARNING": [
"Removing /etc/apt/sources.list to favor deb822 source format"
]

I

"stage": null,

"status": "done"

See the list of all possible reported statuses:

"not started"
"running"

"done"

"error - done"
"error - running"
"degraded done"
"degraded running"
"disabled"

28 Chapter 2. Project and community

cloud-init, Release 24.1.3

Cloud-init enablement status

Separately from the current running status described above, cloud-init can also report how it was disabled or enabled.
This can be viewed by checking the boot_status_code in cloud-init status --long, which may contain any of
the following states:

e 'unknown': ds-identify has not run yet to determine if cloud-init should be run during this boot

e 'disabled-by-marker-file': /etc/cloud/cloud-init.disabled exists which prevents cloud-init from
ever running

e 'disabled-by-generator': ds-identify determined no applicable cloud-init datasources
e 'disabled-by-kernel-cmdline': kernel command line contained cloud-init=disabled

¢ 'disabled-by-environment-variable': environment variable KERNEL_CMDLINE contained
cloud-init=disabled

¢ 'enabled-by-kernel-cmdline': kernel command line contained cloud-init=enabled
* 'enabled-by-generator': ds-identify detected possible cloud-init datasources
* 'enabled-by-sysvinit': enabled by default in SysV init environment

See our explanation of failure states for more information.

Reporting bugs

In this guide, we will show you how to:
1) Collect logs to support your bug report.
2) File bugs to the upstream cloud-init project via GitHub Issues.

3) Report issues for distro-specific packages.

Collect logs

To aid in debugging, please collect the necessary logs. To do so, run the collect-logs subcommand to produce a
tarfile that you can easily upload:

[$ sudo cloud-init collect-logs]

Example output:

[Wrote /home/ubuntu/cloud-init.tar.gz J

If your version of cloud-init does not have the collect-logs subcommand, then please manually collect the base
log files by running the following:

$ sudo dmesg > dmesg.txt

$ sudo journalctl -o short-precise > journal.txt

$ sudo tar -cvf cloud-init.tar dmesg.txt journal.txt /run/cloud-init \
/var/log/cloud-init.log /var/log/cloud-init-output.log

2.2. How-to guides 29

https://github.com/canonical/cloud-init/issues

cloud-init, Release 24.1.3

Report upstream bugs

Bugs for upstream cloud-init are tracked using GitHub Issues. To file a bug:
1. Collect the necessary debug logs as described above.
2. Report an upstream cloud-init bug on GitHub.

If debug logs are not provided, you will be asked for them before any further time is spent debugging. If you are unable
to obtain the required logs please explain why in the bug.

If your bug is for a specific distro using cloud-init, please first consider reporting it with the downstream distro or
confirm that it still occurs with the latest upstream cloud-init code. See the following section for details on specific
distro reporting.

Distro-specific issues

For issues specific to your distro please use one of the following distro-specific reporting mechanisms:

Ubuntu

To report a bug on Ubuntu use the ubuntu-bug command on the affected system to automatically collect the necessary
logs and file a bug on Launchpad:

[$ ubuntu-bug cloud-init J

If that does not work or is not an option, please collect the logs using the commands in the above Collect Logs section
and then report the bug on the Ubuntu bug tracker. Make sure to attach your collected logs!

Debian

To file a bug against the Debian package of cloud-init please use the Debian bug tracker to file against ‘Package:
cloud-init’. See the Debian bug reporting wiki page for more details.

Red Hat, CentOS and Fedora

To file a bug against the Red Hat or Fedora packages of cloud-init please use the Red Hat bugzilla.

SUSE and openSUSE

To file a bug against the SUSE packages of cloud-init please use the SUSE bugzilla.

30 Chapter 2. Project and community

https://github.com/canonical/cloud-init/issues
https://bugs.launchpad.net/ubuntu/+source/cloud-init/+filebug
https://bugs.debian.org/cgi-bin/pkgreport.cgi?pkg=cloud-init;dist=unstable
https://www.debian.org/Bugs/Reporting
https://bugzilla.redhat.com/
https://bugzilla.suse.com/index.cgi

cloud-init, Release 24.1.3

Arch Linux

To file a bug against the Arch package of cloud-init please use the Arch Linux Bugtracker. See the Arch Linux bug
reporting wiki for more details.

How to identify the datasource I’m using

To correctly set up an instance, cloud-init must correctly identify the cloud it is on. Therefore, knowing which
datasource is being used on an instance launch can aid in debugging.

To find out which datasource is being used run the cloud-id command:

[cloud—id]

This will tell you which datasource is being used — for example:

[nocloud J

If the cloud-id is not what is expected, then running the ds-identify script in debug mode and providing that in a
bug report can aid in resolving any issues:

[sudo DEBUG_LEVEL=2 DI_LOG=stderr /usr/lib/cloud-init/ds-identify --force J

The force parameter allows the command to be run again since the instance has already launched. The other options
increase the verbosity of logging and outputs the logs to STDERR.

How to disable cloud-init

One may wish to disable cloud-init to ensure that it doesn’t do anything on subsequent boots. Some parts of cloud-init
may run once per boot otherwise.

There are three cross-platform methods of disabling cloud-init.

Method 1: text file

To disable cloud-init, create the empty file /etc/cloud/cloud-init.disabled. During boot the operating system’s
init system will check for the existence of this file. If it exists, cloud-init will not be started.

Example:

[$ touch /etc/cloud/cloud-init.disabled]

Method 2: kernel commandline

To disable cloud-init, add cloud-init=disabled to the kernel commandline.

Example (using GRUB2 with Ubuntu):

$ echo 'GRUB_CMDLINE_LINUX="cloud-init=disabled"' >> /etc/default/grub
$ grub-mkconfig -o /boot/efi/EFI/ubuntu/grub.cfg

2.2. How-to guides 31

https://bugs.archlinux.org/
https://wiki.archlinux.org/index.php/Bug_reporting_guidelines
https://wiki.archlinux.org/index.php/Bug_reporting_guidelines

cloud-init, Release 24.1.3

Method 3: environment variable

To disable cloud-init, pass the environment variable KERNEL_CMDLINE=cloud-init=disabled into each of cloud-
init’s processes.

Example (using systemd):

$ echo "DefaultEnvironment=KERNEL_CMDLINE=cloud-init=disabled" >> /etc/systemd/system.
—conf

Test pre-release cloud-init
After the cloud-init team creates an upstream release, cloud-init will be released in the -proposed APT repository for
a period of testing. Users are encouraged to test their workloads on this pending release so that bugs can be caught

and fixed prior to becoming more broadly available via the -updates repository. This guide describes how to test the
pre-release package on Ubuntu.

Add the -proposed repository pocket

The -proposed repository pocket will contain the cloud-init package to be tested prior to release in the -updates pocket.

echo "deb http://archive.ubuntu.com/ubuntu $(1sb_release -sc)-proposed main" >> /etc/apt/
—,sources.list.d/proposed.list
apt update

Install the pre-release cloud-init package

[apt install cloud-init

Test the package

Whatever workload you use cloud-init for in production is the best one to test. This ensures that you can discover and
report any bugs that the cloud-init developers missed during testing before cloud-init gets released more broadly.

If issues are found during testing, please file a new cloud-init bug and leave a message in the #cloud-init IRC channel.

Remove the proposed repository

Do this to avoid unintentionally installing other unreleased packages.

rm -f /etc/apt/sources.list.d/proposed.list
apt update

32 Chapter 2. Project and community

https://github.com/canonical/cloud-init/issues
https://kiwiirc.com/nextclient/irc.libera.chat/cloud-init

cloud-init, Release 24.1.3

Remove artefacts and reboot

This will cause cloud-init to rerun as if it is a first boot.

[sudo cloud-init clean --logs --reboot

2.3 Explanation

Our explanatory and conceptual guides are written to provide a better understanding of how cloud-init works. They
enable you to expand your knowledge and become better at using and configuring cloud-init.

2.3.1 Introduction to cloud-init

Managing and configuring cloud instances and servers can be a complex and time-consuming task. Cloud-init is an
open source initialisation tool that was designed to make it easier to get your systems up and running with a minimum
of effort, already configured according to your needs.

It’s most often used by developers, system administrators and other IT professionals to automate configuration of VMs,
cloud instances, or machines on a network. For brevity, we’ll refer only to instances for the rest of this page, but assume
we’re also including bare metal and VMs in the discussion as well. By automating routine setup tasks, cloud-init
ensures repeatability and efficiency in your system provisioning.

What is the benefit of cloud-init?

When you deploy a new cloud instance, cloud-init takes an initial configuration that you supply, and it automatically
applies those settings when the instance is created. It’s rather like writing a to-do list, and then letting cloud-init deal
with that list for you.

The real power of cloud-init comes from the fact that you can re-use your configuration instructions as often as you
want, and always get consistent, reliable results. If you’re a system administrator and you want to deploy a whole fleet
of machines, you can do so with a fraction of the time and effort it would take to manually provision them.

What does cloud-init do?

Cloud-init can handle a range of tasks that normally happen when a new instance is created. It’s responsible for activ-
ities like setting the hostname, configuring network interfaces, creating user accounts, and even running scripts. This
streamlines the deployment process; your cloud instances will all be automatically configured in the same way, which
reduces the chance to introduce human error.

How does cloud-init work?

The operation of cloud-init broadly takes place in two separate phases during the boot process. The first phase is
during the early (local) boot stage, before networking has been enabled. The second is during the late boot stages, after
cloud-init has applied the networking configuration.

2.3. Explanation 33

cloud-init, Release 24.1.3

During early boot

In this pre-networking stage, cloud-init discovers the datasource, obtains all the configuration data from it, and config-
ures networking. In this phase, it will:

* Identify the datasource: The hardware is checked for built-in values that will identify the datasource your
instance is running on. The datasource is the source of all configuration data.

 Fetch the configuration: Once the datasource is identified, cloud-init fetches the configuration data from it.
This data tells cloud-init what actions to take. This can be in the form of:

— Metadata about the instance, such as the machine ID, hostname and network config, or

— Vendor data and/or user data. These take the same form, although Vendor data is provided by the cloud
vendor, and user data is provided by the user. These data are usually applied in the post-networking phase,
and might include:

% Hardware optimisations

% Integration with the specific cloud platform
% SSH keys

% Custom scripts

* Write network configuration: Cloud-init writes the network configuration and configures DNS, ready to be
applied by the networking services when they come up.

During late boot

In the boot stages that come after the network has been configured, cloud-init runs through the tasks that were not
critical for provisioning. This is where it configures the running instance according to your needs, as specified in the
vendor data and/or user data. It will take care of:

* Configuration management: Cloud-init can interact with tools like Puppet, Ansible, or Chef to apply more
complex configuration - and ensure the system is up-to-date.

* Installing software: Cloud-init can install software at this stage, and run software updates to make sure the
system is fully up-to-date and ready to use.

» User accounts: Cloud-init is able to create and modify user accounts, set default passwords, and configure
permissions.

* Execute user scripts: If any custom scripts were provided in the user data, cloud-init can run them. This allows
additional specified software to be installed, security settings to be applied, etc. It can also inject SSH keys into
the instance’s authorized_keys file, which allows secure remote access to the machine.

After this stage is complete, your instance is fully configured!

34 Chapter 2. Project and community

cloud-init, Release 24.1.3

What’s next?
Now that you have an overview of the basics of what cloud-init is, what it does and how it works, you will probably
want to try it out for yourself .

You can also read in more detail about what cloud-init does during the different boot stages, and the types of configu-
ration you can pass to cloud-init and how they’re used.

2.3.2 Configuration sources

Internally, cloud-init builds a single configuration that is then referenced throughout the life of cloud-init. The
configuration is built from multiple sources such that if a key is defined in multiple sources, the higher priority source
overwrites the lower priority source.

Base configuration

From lowest priority to highest, configuration sources are:
* Hardcoded config: Config that lives within the source of cloud-init and cannot be changed.
* Configuration directory: Anything defined in /etc/cloud/cloud.cfg and /etc/cloud/cloud.cfg.d.
* Runtime config: Anything defined in /run/cloud-init/cloud.cfg.

¢ Kernel command line: On the kernel command line, anything found between cc: and end_cc will be inter-
preted as cloud-config user data.

These four sources make up the base configuration.
Vendor and user data

Added to the base configuration are vendor data and user data which are both provided by the datasource.

These get fetched from the datasource and are defined at instance launch.

Note: While much of what is defined in the base configuration can be overridden by vendor data and user data, base
configuration sources do not conform to #cloud-config.

Network configuration

Network configuration happens independently from other cloud-init configuration. See network configuration doc-
umentation for more information.

2.3. Explanation 35

https://github.com/canonical/cloud-init/blob/b861ea8a5e1fd0eb33096f60f54eeff42d80d3bd/cloudinit/settings.py#L22

cloud-init, Release 24.1.3

Specifying configuration

End users

Pass user data to the cloud provider. Every platform supporting cloud-init will provide a method of supplying
user data. If you’re unsure how to do this, reference the documentation provided by the cloud platform you’re on.
Additionally, there may be related cloud-init documentation in the datasource section.

Once an instance has been initialised, the user data may not be edited. It is sourced directly from the cloud, so even if
you find a local file that contains user data, it will likely be overwritten in the next boot.

Distro providers

Modify the base config. This often involves submitting a PR to modify the base cloud.cfg template, which is used to
customise /etc/cloud/cloud.cfg per distro. Additionally, a file can be added to /etc/cloud/cloud.cfg.d to
override a piece of the base configuration.

Cloud providers

Pass vendor data. This is the preferred method for clouds to provide their own customisation. In some cases, it may
make sense to modify the base config in the same manner as distro providers on cloud-supported images.

2.3.3 Boot stages

There are five stages to boot:
1. Detect
2. Local
3. Network
4. Config
5. Final

Detect
A platform identification tool called ds-identify runs in the first stage. This tool detects which platform the instance

is running on. This tool is integrated into the init system to disable cloud-init when no platform is found, and enable
cloud-init when a valid platform is detected. This stage might not be present for every installation of cloud-init.

Local

systemd service cloud-init-local.service

runs as soon as possible with / mounted read-write
blocks as much of boot as possible, must block network
modules none

The purpose of the local stage is to:

36 Chapter 2. Project and community

https://github.com/canonical/cloud-init/blob/main/config/cloud.cfg.tmpl

cloud-init, Release 24.1.3

¢ Locate “local” data sources, and
* Apply networking configuration to the system (including “fallback™).

In most cases, this stage does not do much more than that. It finds the datasource and determines the network configu-
ration to be used. That network configuration can come from:

* datasource: Cloud-provided network configuration via metadata.

« fallback: Cloud-init’s fallback networking consists of rendering the equivalent to dhcp on eth®, which was
historically the most popular mechanism for network configuration of a guest.

* none: Network configuration can be disabled by writing the file /etc/cloud/cloud.cfg with the content:
network: {config: disabled}.

If this is an instance’s first boot, then the selected network configuration is rendered. This includes clearing of all
previous (stale) configuration including persistent device naming with old MAC addresses.

This stage must block network bring-up or any stale configuration that might have already been applied. Otherwise,
that could have negative effects such as DHCP hooks or broadcast of an old hostname. It would also put the system in
an odd state to recover from, as it may then have to restart network devices.

Cloud-init then exits and expects for the continued boot of the operating system to bring network configuration up
as configured.

Note: In the past, local datasources have been only those that were available without network (such as ‘ConfigDrive’).
However, as seen in the recent additions to the DigitalOcean datasource, even data sources that require a network can
operate at this stage.

Network

systemd service cloud-init.service

runs after local stage and configured networking is up
blocks as much of remaining boot as possible

modules cloud_init_modules in /etc/cloud/cloud.cfg

This stage requires all configured networking to be online, as it will fully process any user data that is found. Here,
processing means it will:

* retrieve any #include or #include-once (recursively) including http,
* decompress any compressed content, and
* run any part-handler found.

This stage runs the disk_setup and mounts modules which may partition and format disks and configure mount points
(such as in /etc/fstab). Those modules cannot run earlier as they may receive configuration input from sources only
available via the network. For example, a user may have provided user data in a network resource that describes how
local mounts should be done.

On some clouds, such as Azure, this stage will create filesystems to be mounted, including ones that have stale (previous
instance) references in /etc/fstab. As such, entries in /etc/fstab other than those necessary for cloud-init to run
should not be done until after this stage.

A part-handler and boothooks will run at this stage.

2.3. Explanation 37

cloud-init, Release 24.1.3

Config
systemd service cloud-config.service
runs after network
blocks nothing
modules cloud_config_modules in /etc/cloud/cloud.cfg

This stage runs config modules only. Modules that do not really have an effect on other stages of boot are run here,
including runcmd.

Final

systemd service cloud-final.service

runs as final part of boot (traditional “rc.local”)

blocks nothing

modules cloud_final_modules in /etc/cloud/cloud.cfg

This stage runs as late in boot as possible. Any scripts that a user is accustomed to running after logging into a system
should run correctly here. Things that run here include:

* package installations,
* configuration management plugins (Ansible, Puppet, Chef, salt-minion), and
* user-defined scripts (i.e., shell scripts passed as user data).

For scripts external to cloud-init looking to wait until cloud-init is finished, the cloud-init status --wait
subcommand can help block external scripts until cloud-init is done without having to write your own systemd
units dependency chains. See status for more info.

First boot determination

Cloud-init has to determine whether or not the current boot is the first boot of a new instance, so that it applies
the appropriate configuration. On an instance’s first boot, it should run all “per-instance” configuration, whereas on a
subsequent boot it should run only “per-boot” configuration. This section describes how cloud-init performs this
determination, as well as why it is necessary.

When it runs, cloud-init stores a cache of its internal state for use across stages and boots.

If this cache is present, then cloud-init has run on this system before'. There are two cases where this could occur.
Most commonly, the instance has been rebooted, and this is a second/subsequent boot. Alternatively, the filesystem
has been attached to a new instance, and this is the instance’s first boot. The most obvious case where this happens is
when an instance is launched from an image captured from a launched instance.

By default, cloud-init attempts to determine which case it is running in by checking the instance ID in the cache
against the instance ID it determines at runtime. If they do not match, then this is an instance’s first boot; otherwise,
it’s a subsequent boot. Internally, cloud-init refers to this behaviour as check.

! It follows that if this cache is not present, cloud-init has not run on this system before, so this is unambiguously this instance’s first boot.

38 Chapter 2. Project and community

cloud-init, Release 24.1.3

This behaviour is required for images captured from launched instances to behave correctly, and so is the default that
generic cloud images ship with. However, there are cases where it can cause problems?. For these cases, cloud-init
has support for modifying its behaviour to trust the instance ID that is present in the system unconditionally. This
means that cloud-init will never detect a new instance when the cache is present, and it follows that the only way to
cause cloud-init to detect a new instance (and therefore its first boot) is to manually remove cloud-init’s cache.
Internally, this behaviour is referred to as trust.

To configure which of these behaviours to use, cloud-init exposes the manual_cache_clean configuration option.
When false (the default), cloud-init will check and clean the cache if the instance IDs do not match (this is the
default, as discussed above). When true, cloud-init will trust the existing cache (and therefore not clean it).

Manual cache cleaning

Cloud-init ships a command for manually cleaning the cache: cloud-init clean. See clean’s documentation for
further details.

Reverting manual_cache_clean setting

Currently there is no support for switching an instance that is launched with manual_cache_clean: true from
trust behaviour to check behaviour, other than manually cleaning the cache.

Warning: If you want to capture an instance that is currently in trust mode as an image for launching other
instances, you must manually clean the cache. If you do not do so, then instances launched from the captured
image will all detect their first boot as a subsequent boot of the captured instance, and will not apply any per-
instance configuration.

This is a functional issue, but also a potential security one: cloud-init is responsible for rotating SSH host keys
on first boot, and this will not happen on these instances.

2.3.4 User data formats

User data that will be acted upon by cloud-init must be in one of the following types.

2 A couple of ways in which this strict reliance on the presence of a datasource has been observed to cause problems:

 If a cloud’s metadata service is flaky and cloud-init cannot obtain the instance ID locally on that platform, cloud-init’s instance ID
determination will sometimes fail to determine the current instance ID, which makes it impossible to determine if this is an instance’s first
or subsequent boot (#1885527).

e If cloud-init is used to provision a physical appliance or device and an attacker can present a datasource to the device with a differ-
ent instance ID, then cloud-init’s default behaviour will detect this as an instance’s first boot and reset the device using the attacker’s
configuration (this has been observed with the NoCloud datasource in #1879530).

2.3. Explanation 39

https://bugs.launchpad.net/ubuntu/+source/cloud-init/+bug/1885527
https://bugs.launchpad.net/ubuntu/+source/cloud-init/+bug/1879530

cloud-init, Release 24.1.3

Cloud config data
Cloud-config is the simplest way to accomplish some things via user data. Using cloud-config syntax, the user can
specify certain things in a human-friendly format.
These things include:
e apt upgrade should be run on first boot
¢ a different apt mirror should be used
¢ additional apt sources should be added
* certain SSH keys should be imported

* and many more. ..

Note: This file must be valid YAML syntax.

See the Cloud config examples section for a commented set of examples of supported cloud config formats.

Begins with: #cloud-config or Content-Type: text/cloud-config when using a MIME archive.

Note: Cloud config data can also render cloud instance metadata variables using jinja templating. See Instance
metadata for more information.

User data script

Typically used by those who just want to execute a shell script.
Begins with: #! or Content-Type: text/x-shellscript when using a MIME archive.

User data scripts can optionally render cloud instance metadata variables using jinja templating. See Instance metadata
for more information.

Example script

Create a script file myscript. sh that contains the following:

#!/bin/sh
echo "Hello World. The time is now $(date -R)!" | tee /root/output.txt

Now run:

[$ euca-run-instances --key mykey --user-data-file myscript.sh ami-a07d95c9

40 Chapter 2. Project and community

cloud-init, Release 24.1.3

Kernel command line

When using the NoCloud datasource, users can pass user data via the kernel command line parameters. See the NoCloud
datasource and Kernel command line documentation for more details.

Gzip compressed content

Content found to be gzip compressed will be uncompressed. The uncompressed data will then be used as if it were not
compressed. This is typically useful because user data is limited to ~16384' bytes.

MIME multi-part archive

This list of rules is applied to each part of this multi-part file. Using a MIME multi-part file, the user can specify more
than one type of data.

For example, both a user data script and a cloud-config type could be specified.

Supported content-types are listed from the cloud-init subcommand make-mime:

[$ cloud-init devel make-mime --list-types

Example output:

cloud-boothook
cloud-config
cloud-config-archive
cloud-config-jsonp
jinja2

part-handler
x-include-once-url
x-include-url
x-shellscript
x-shellscript-per-boot
x-shellscript-per-instance
x-shellscript-per-once

Helper subcommand to generate MIME messages

The cloud-init make-mime subcommand can also generate MIME multi-part files.

The make-mime subcommand takes pairs of (filename, “text/” mime subtype) separated by a colon (e.g., config.
yaml : cloud-config) and emits a MIME multipart message to stdout.

! See your cloud provider for applicable user-data size limitations. ..

2.3. Explanation 41

https://github.com/canonical/cloud-init/blob/main/cloudinit/cmd/devel/make_mime.py

cloud-init, Release 24.1.3

Examples

Create user data containing both a cloud-config (config.yaml) and a shell script (script.sh)

$ cloud-init devel make-mime -a config.yaml:cloud-config -a script.sh:x-shellscript >.
—userdata

Create user data containing 3 shell scripts:
* always.sh - run every boot
e instance.sh - run once per instance

e once.sh - run once

$ cloud-init devel make-mime -a always.sh:x-shellscript-per-boot -a instance.sh:x-
—»shellscript-per-instance -a once.sh:x-shellscript-per-once

include file

This content is an include file.

The file contains a list of URLs, one per line. Each of the URLs will be read and their content will be passed through
this same set of rules, i.e., the content read from the URL can be gzipped, MIME multi-part, or plain text. If an error
occurs reading a file the remaining files will not be read.

Begins with: #include or Content-Type: text/x-include-url when using a MIME archive.

cloud-boothook

This content is boothook data. It is stored in a file under /var/lib/cloud and executed immediately. This is the
earliest hook available. Note, that there is no mechanism provided for running only once. The boothook must take care
of this itself.

It is provided with the instance id in the environment variable INSTANCE_ID. This could be made use of to provide a
‘once-per-instance’ type of functionality.

Begins with: #cloud-boothook or Content-Type: text/cloud-boothook when using a MIME archive.

Part-handler

This is a part-handler: It contains custom code for either supporting new mime-types in multi-part user data, or over-
riding the existing handlers for supported mime-types. It will be written to a file in /var/1ib/cloud/data based on
its filename (which is generated).

This must be Python code that contains a 1ist_types function and a handle_part function. Once the section is read
the 1ist_types method will be called. It must return a list of mime-types that this part-handler handles. Since MIME
parts are processed in order, a part-handler part must precede any parts with mime-types it is expected to handle in the
same user data.

The handle_part function must be defined like:

def handle_part(data, ctype, filename, payload):
data = the cloudinit object

ctype = "__begin__", "__end__'

]

, or the mime-type of the part that is being handled.
(continues on next page)

42 Chapter 2. Project and community

cloud-init, Release 24.1.3

(continued from previous page)

filename = the filename of the part (or a generated filename if none is present in.
—mime data)
payload = the parts' content

Cloud-init will then call the handle_part function once before it handles any parts, once per part received, and
once after all parts have been handled. The '__begin__"' and '__end__"' sentinels allow the part handler to do
initialisation or teardown before or after receiving any parts.

Begins with: #part-handler or Content-Type: text/part-handler when using a MIME archive.

Example

#part-handler

def list_types(Q:
return a list of mime-types that are handled by this module
return(["text/plain", "text/go-cubs-go"])

def handle_part(data, ctype, filename, payload):
data: the cloudinit object

ctype: '__begin__', '_end__', or the specific mime-type of the part
filename: the filename for the part, or dynamically generated part if
no filename is given attribute is present
payload: the content of the part (empty for begin or end)
if ctype == "__begin__":
print("my handler is beginning")
return
if ctype == "__end__":
print("my handler is ending")
return
print (f"==== received ctype={ctype} filename={filename} ===="
print (payload)
print(f"==== end ctype={ctype} filename={filename}")

Also, this blog post offers another example for more advanced usage.

2.3. Explanation 43

http://foss-boss.blogspot.com/2011/01/advanced-cloud-init-custom-handlers.html

cloud-init, Release 24.1.3

Disabling user data

Cloud-init can be configured to ignore any user data provided to instance. This allows custom images to prevent users
from accidentally breaking closed appliances. Setting allow_userdata: false in the configuration will disable
cloud-init from processing user data.

2.3.5 Events and updates

Events

Cloud-init will fetch and apply cloud and user data configuration upon several event types. The two most common
events for cloud-init are when an instance first boots and any subsequent boot thereafter (reboot). In addition to
boot events, cloud-init users and vendors are interested in when devices are added. Cloud-init currently supports
the following event types:

e BOOT_NEW_INSTANCE: New instance first boot.
* BOOT: Any system boot other than BOOT_NEW_INSTANCE.

* BOOT_LEGACY: Similar to BOOT, but applies networking config twice each boot: once during the Local stage,
then again in the Network stage. As this behaviour was previously the default behaviour, this option exists to
prevent regressing such behaviour.

* HOTPLUG: Dynamic add of a system device.

Future work will likely include infrastructure and support for the following events:
* METADATA_CHANGE: An instance’s metadata has changed.
* USER_REQUEST: Directed request to update.

Datasource event support

All datasources support the BOOT_NEW_INSTANCE event by default. Each datasource will declare a set of these events
that it is capable of handling. Datasources may not support all event types. In some cases a system may be configured
to allow a particular event but may be running on a platform whose datasource cannot support the event.

Configuring event updates

Update configuration may be specified via user data, which can be used to enable or disable handling of specific events.
This configuration will be honored as long as the events are supported by the datasource. However, configuration will
always be applied at first boot, regardless of the user data specified.

Updates

Update policy configuration defines which events are allowed to be handled. This is separate from whether a particular
platform or datasource has the capability for such events.

scope: <name of the scope for event policy>
The scope value is a string which defines which domain the event occurs under. Currently, the only known
scope is network, though more scopes may be added in the future. Scopes are defined by convention but
arbitrary values can be used.

when: <list of events to handle for a particular scope >
Each scope requires a when element to specify which events are to allowed to be handled.

44 Chapter 2. Project and community

cloud-init, Release 24.1.3

Hotplug

When the hotplug event is supported by the datasource and configured in user data, cloud-init will respond to the
addition or removal of network interfaces to the system. In addition to fetching and updating the system metadata,
cloud-init will also bring up/down the newly added interface.

Warning: Due to its use of systemd sockets, hotplug functionality is currently incompatible with SELinux on
Linux distributions using systemd. This issue is being tracked in GitHub #3890. Additionally, hotplug support is
considered experimental for non-Alpine and non-Debian-based systems.

Example

Apply network config every boot

On every boot, apply network configuration found in the datasource.

apply network config on every boot
updates:
network:
when: ['boot']

2.3.6 Instance metadata

Kernel command line

Providing configuration data via the kernel command line is somewhat of a last resort, since this method only supports
cloud config starting with #cloud-config, and many datasources do not support injecting kernel command line arguments
without modifying the bootloader.

Despite the limitations of using the kernel command line, cloud-init supports some use-cases.

Note that this page describes kernel command line behavior that applies to all clouds. To provide a local configuration
with an image using kernel command line, see datasource NoCloud which provides more configuration options.

Datasource discovery override

During boot, cloud-init must identify which datasource it is running on (OpenStack, AWS, Azure, GCP, etc). This
discovery step can be optionally overridden by specifying the datasource name, such as:

[root:/dev/sda ro ds=openstack

2.3. Explanation 45

https://github.com/canonical/cloud-init/issues/3890

cloud-init, Release 24.1.3

Kernel cloud-config-url configuration

In order to allow an ephemeral, or otherwise pristine image to receive some configuration, cloud-init can read a
URL directed by the kernel command line and proceed as if its data had previously existed.

This allows for configuring a metadata service, or some other data.

When the local stage runs, it will check to see if cloud-config-url appears in key/value fashion in the kernel
command line, such as:

[root=/dev/sda ro cloud-config-url=http://foo.bar.zee/abcde]

Cloud-init will then read the contents of the given URL. If the content starts with #cloud-config, it will store
that data to the local filesystem in a static filename /etc/cloud/cloud.cfg.d/91_kernel_cmdline_url.cfg,
and consider it as part of the config from that point forward.

Note: If /etc/cloud/cloud.cfg.d/91_kernel_cmdline_url.cfg already exists, cloud-init will not overwrite
the file, and the cloud-config-url parameter is completely ignored.

This is useful, for example, to be able to configure the MAAS datasource by controlling the kernel command line from
outside the image, you can append:

[cloud—config—urlzhttp ://your.url.here/abcdefg J

Then, have the following content at that url:

#cloud-config
datasource:
MAAS:
metadata_url: http://mass-host.localdomain/source
consumer_key: Xh234sdkljf
token_key: kjfhgb3n
token_secret: 24uysdfxlw4

Warning: url kernel command line key is deprecated. Please use cloud-config-url parameter instead.

Note: Since cloud-config-url=is so generic, in order to avoid false positives, only cloud config user data starting
with #cloud-config is supported.

Note: The cloud-config-url=isunencrypted http GET, and may contain credentials. Care must be taken to ensure
this data is only transferred via trusted channels (i.e., within a closed system).

46 Chapter 2. Project and community

cloud-init, Release 24.1.3

What is instance-data?

Each cloud provider presents unique configuration metadata to a launched cloud instance. Cloud-init crawls this
metadata and then caches and exposes this information as a standardised and versioned JSON object known as
instance-data. This instance-data may then be queried or later used by cloud-init in templated configuration
and scripts.

An example of a small subset of instance-data on a launched EC2 instance:

{
"vi": {
"cloud_name": "aws",
"distro": "ubuntu",
"distro_release": "jammy",
"distro_version": "22.04",
"instance_id": "i-06b5687b4d7b8595d",
"machine": "x86_64",
"platform": "ec2",
"python_version": "3.10.4",
"region": "us-east-2",
"variant": "ubuntu"
}
1
Discovery

One way to easily explore which instance-data variables are available on your machine is to use the cloud-init query
tool. Warnings or exceptions will be raised on invalid instance-data keys, paths or invalid syntax.

The query command also publishes userdata and vendordata keys to the root user which will contain the decoded
user and vendor data provided to this instance. Non-root users referencing userdata or vendordata keys will see
only redacted values.

Note: To save time designing a user data template for a specific cloud’s instance-data. json, use the render
command on an instance booted on your favorite cloud. See devel for more information.

Using instance-data

instance-data can be used in:
» User data scripts.
* Cloud-config data.
* Base configuration.
¢ Command line interface via cloud-init query or cloud-init devel render.

The aforementioned configuration sources support jinja template rendering. When the first line of the provided config-
uration begins with ## template: jinja, cloud-init will use jinja to render that file. Any instance-data variables
are surfaced as jinja template variables.

2.3. Explanation 47

cloud-init, Release 24.1.3

Note: Trying to reference jinja variables that don’t exist in instance-data will result in warnings in /
var/log/cloud-init.log and the following string in your rendered user-data: CI_MISSING_JINJA_VAR/
<your_varname>.

Sensitive data such as user passwords may be contained in instance-data. Cloud-init separates this sensitive data
such that is it only readable by root. In the case that a non-root user attempts to read sensitive instance-data, they
will receive redacted data or the same warnings and text that occur if a variable does not exist.

Example: Cloud config with instance-data

template: jinja
#cloud-config
runcmd:
- echo 'EC2 public hostname allocated to instance: {{
ds.meta_data.public_hostname }}' > /tmp/instance_metadata
- echo 'EC2 availability zone: {{ vl.availability_zone }}' >>
/tmp/instance_metadata
- curl -X POST -d '{"hostname": "{{ds.meta_data.public_hostname }}",
"availability-zone": "{{ vl.availability_zone }}"}'
https://example.com

Example: User data script with instance-data

template: jinja

#!/bin/bash

{% if vl.region == 'us-east-2' -%}

echo 'Installing custom proxies for {{ vl.region }}'
sudo apt-get install my-xtra-fast-stack

{%- endif %}

Example: CLI discovery of instance-data

List all instance-data keys and values as root user
sudo cloud-init query --all

Tooak

-

List all top-level instance-data keys available
$ cloud-init query --list-keys

Introspect nested keys on an object
$ cloud-init query -f "{{ds.keys(}}"
dict_keys(['meta_data', '_doc'])

Failure to reference valid dot-delimited key path on a known top-level key
$ cloud-init query vl.not_here
ERROR: instance-data 'vl' has no 'not_here'

(continues on next page)

48 Chapter 2. Project and community

cloud-init, Release 24.1.3

(continued from previous page)

Test expected value using valid instance-data key path
$ cloud-init query -f "My AMI: {{ds.meta_data.ami_id}}"
My AMI: ami-O0fecc35d3c8ba8d60

The --format command renders jinja templates, this can also be used
to develop and test jinja template constructs
$ cat > test-templating.yaml <<EOF
{% for val in ds.meta_data.keys() %}
- {{val }}
{% endfor %}
EOF
$ cloud-init query --format="$(cat test-templating.yaml)"
- instance_id
- dsmode
- local_hostname

Reference

Storage locations

e /run/cloud-init/instance-data. json: world-readable JSON containing standardised keys, sensitive keys
redacted.

e /run/cloud-init/instance-data-sensitive. json: root-readable unredacted JSON blob.

e /run/cloud-init/combined-cloud-config. json: root-readable unredacted JSON blob. Any meta-data,
vendor-data and user-data overrides are applied to the /run/cloud-init/combined-cloud-config. json
config values.

instance-data.json top level keys
base64_encoded_keys

A list of forward-slash delimited key paths into the instance-data. json object whose value is base64encoded for
JSON compatibility. Values at these paths should be decoded to get the original value.

features

A dictionary of feature name and boolean value pairs. A value of True means the feature is enabled.

2.3. Explanation 49

cloud-init, Release 24.1.3

sensitive_keys

A list of forward-slash delimited key paths into the instance-data. json object whose value is considered by the
datasource as ‘security sensitive’. Only the keys listed here will be redacted from instance-data. json for non-root
users.

merged_cfg

Deprecated use merged_system_cfg instead.

merged_system_cfg

Merged cloud-init Base configuration from /etc/cloud/cloud.cfg and /etc/cloud/cloud-cfg.d. Values
under this key could contain sensitive information such as passwords, so it is included in the sensitive-keys list
which is only readable by root.

Note: merged_system_cfg represents only the merged config from the underlying filesystem. These values can
be overridden by meta-data, vendor-data or user-data. The fully merged cloud-config provided to a machine which
accounts for any supplemental overrides is the file /run/cloud-init/combined-cloud-config. json.

ds

Datasource-specific metadata crawled for the specific cloud platform. It should closely represent the structure of the
cloud metadata crawled. The structure of content and details provided are entirely cloud-dependent. Mileage will vary
depending on what the cloud exposes. The content exposed under the ds key is currently experimental and expected
to change slightly in the upcoming cloud-init release.

sys_info

Information about the underlying OS, Python, architecture and kernel. This represents the data collected by
cloudinit.util.system_info.

system_info

This is a cloud-init configuration key present in /etc/cloud/cloud.cfg which describes cloud-init’s configured
default_user, distro, network renderers, and paths that cloud-init will use. Not to be confused with the underlying host
sys_info key above.

50 Chapter 2. Project and community

cloud-init, Release 24.1.3

vl

Standardised cloud-init metadata keys, these keys are guaranteed to exist on all cloud platforms. They will also
retain their current behaviour and format, and will be carried forward even if cloud-init introduces a new version of
standardised keys with v2.

To cut down on keystrokes on the command line, cloud-init also provides top-level key aliases for any standardised
v# keys present. The preceding v1 is not required of v1.var_name These aliases will represent the value of the highest
versioned standard key. For example, cloud_name value will be v2.cloud_name if both v1 and v2 keys are present
in instance-data. json.

Cloud-init also provides jinja-safe key aliases for any instance-data keys which contain jinja operator characters
such as +, -, ., /, etc. Any jinja operator will be replaced with underscores in the jinja-safe key alias. This allows
for cloud-init templates to use aliased variable references which allow for jinja’s dot-notation reference such as {{
ds.v1_0.my_safe_key }} instead of {{ ds["v1.0"]["my/safe-key"] }}.

Standardised instance-data. json vi keys
vl._beta_keys

List of standardised keys still in ‘beta’. The format, intent or presence of these keys can change. Do not consider them
production-ready.

Example output:

* [subplatform]

v1.cloud_name

Where possible this will indicate the ‘name’ of the cloud the system is running on. This is different than the ‘platform’
item. For example, the cloud name of Amazon Web Services is ‘aws’, while the platform is ‘ec2’.

If determining a specific name is not possible or provided in meta-data, then this filed may contain the same content
as ‘platform’.

Example output:
* aws
* openstack
* azure
* configdrive
* nocloud

e ovf

2.3. Explanation 51

cloud-init, Release 24.1.3

vl.distro, vl.distro_version, vl.distro_release

This shall be the distro name, version and release as determined by cloudinit.util.get_linux_distro.
Example output:

e alpine, 3.12.0, ‘Alpine Linux v3.12’

e centos, 7.5, core

¢ debian, 9, stretch

¢ freebsd, 12.0-release-p10,

* opensuse, 42.3, x86_64

* opensuse-tumbleweed, 20180920, x86_64

e redhat, 7.5, ‘maipo’

e sles, 12.3, x86_64

e ubuntu, 20.04, focal

vl.instance_id

Unique instance_id allocated by the cloud.
Example output:

¢ j-<hash>

vl.kernel_release

This shall be the running kernel uname -r.
Example output:

¢ 5.3.0-1010-aws

vl.local_hostname

The internal or local hostname of the system.
Example output:
e ip-10-41-41-70

e <user-provided-hostname>

52 Chapter 2. Project and community

cloud-init, Release 24.1.3

vl.machine

This shall be the running cpu machine architecture uname -m.
Example output:

* x86_64

* 1686

* ppcbdle

* $390x

vl.platform

An attempt to identify the cloud platform instance that the system is running on.
Example output:

* ec2

* openstack

e Ixd

e gce

* nocloud

e ovf

vl.subplatform

Additional platform details describing the specific source or type of metadata used. The format of subplatform will be:
<subplatform_type> (<url_file_or_dev_path>)
Example output:

* metadata (http://169.254.169.254)

* seed-dir (/path/to/seed-dir/)

* config-disk (/dev/cd0)

¢ configdrive (/dev/sr0)

vl.public_ssh_keys

A list of SSH keys provided to the instance by the datasource metadata.
Example output:

e [‘ssh-rsa AA...’,...]

2.3. Explanation 53

http://169.254.169.254

cloud-init, Release 24.1.3

vl.python_version

The version of Python that is running cloud-init as determined by cloudinit.util.system_info.
Example output:

* 376

vl.region

The physical region/data centre in which the instance is deployed.
Example output:

e us-east-2

vl.availability_zone

The physical availability zone in which the instance is deployed.
Example output:

* us-east-2b

* nova

e null

Example Output

Below is an example of /run/cloud-init/instance-data-sensitive. json on an EC2 instance:

{
"_beta_keys": [
"subplatform"
1:
"availability_zone": "us-east-1b",
"base64_encoded_keys": [],
"merged_cfg": {
"_doc": "Merged cloud-init base config from /etc/cloud/cloud.cfg and /etc/cloud/cloud.
—cfg.d/",
"_log": [
"[loggers]\nkeys=root,cloudinit\n\n[handlers]\nkeys=consoleHandler,cloudLogHandler\n\
—n[formatters]\nkeys=simpleFormatter,argOFormatter\n\n[logger_root]\nlevel=DEBUG\
—nhandlers=consoleHandler, cloudLogHandler\n\n[logger_cloudinit]\nlevel=DEBUG\
—nqualname=cloudinit\nhandlers=\npropagate=1\n\n[handler_consoleHandler]\
—nclass=StreamHandler\nlevel=WARNING\nformatter=arg@Formatter\nargs=(sys.stderr,)\n\
—n[formatter_argOFormatter]\nformat=%(asctime)s - %(filename)s[%(levelname)s]:
—%(message) s\n\n[formatter_simpleFormatter]\nformat=[CLOUDINIT] %(filename)s[
—%(levelname)s]: %(message)s\n",
"[handler_cloudLogHandler]\nclass=FileHandler\nlevel=DEBUG\nformatter=argOFormatter\
—nargs=('/var/log/cloud-init.log',)\n",
"[handler_cloudLogHandler]\nclass=handlers.SysLogHandler\nlevel=DEBUG\
—nformatter=simpleFormatter\nargs=(\"/dev/log\", handlers.SysLogHandler.LOG_USER)\n"

(continues on next page)

54 Chapter 2. Project and community

cloud-init, Release 24.1.3

(continued from previous page)
i[e
"cloud_config_modules": [
"snap",
"ssh_import_id",
"locale",
"set_passwords",
"grub_dpkg",
"apt_pipelining",
"apt_configure",
"ubuntu_pro",
"ntp" ’
"timezone",
"disable_ec2_metadata",
"runcmd",
"byobu"
ie
"cloud_final_modules": [
"package_update_upgrade_install",
"fan",
"landscape",
"1xd",
"ubuntu_drivers",
"puppet”,
"chef",
"mcollective",
"salt_minion",
"scripts_vendor",
"scripts_per_once",
"scripts_per_boot",
"scripts_per_instance",
"scripts_user",
"ssh_authkey_fingerprints",
"keys_to_console",
"phone_home",
"final_message",
"power_state_change"
i
"cloud_init_modules": [
"seed_random",
"bootcmd",
"write_files",
"growpart",
"resizefs",
"disk_setup",
"mounts",
"set_hostname",
"update_hostname",
"update_etc_hosts",
"ca_certs",
"rsyslog",
"users_groups",
"ssh"

(continues on next page)

2.3. Explanation 55

cloud-init, Release 24.1.3

(continued from previous page)

i[e
"datasource_list": [
"Ec2",
"None"
i
"def_log_file": "/var/log/cloud-init.log",
"disable_root": true,
"log_cfgs": [
[
"[loggers]\nkeys=root,cloudinit\n\n[handlers]\nkeys=consoleHandler,cloudLogHandler\n\
—n[formatters]\nkeys=simpleFormatter,argOFormatter\n\n[logger_root]\nlevel=DEBUG\
—snhandlers=consoleHandler, cloudLogHandler\n\n[logger_cloudinit]\nlevel=DEBUG\
—nqualname=cloudinit\nhandlers=\npropagate=1\n\n[handler_consoleHandler]\
—nclass=StreamHandler\nlevel=WARNING\nformatter=argQFormatter\nargs=(sys.stderr,)\n\
—n[formatter_argOFormatter]\nformat=%(asctime)s - %(filename)s[%(levelname)s]:
<% (message) s\n\n[formatter_simpleFormatter]\nformat=[CLOUDINIT] %(filename)s[
—%(levelname)s]: %(message)s\n",
"[handler_cloudLogHandler]\nclass=FileHandler\nlevel=DEBUG\nformatter=argOFormatter\
—nargs=('/var/log/cloud-init.log"',)\n"
1
i
"output": {
"all": "| tee -a /var/log/cloud-init-output.log"
e
"preserve_hostname": false,
"syslog_fix_perms": [
"syslog:adm",
"root:adm",
"root:wheel",
"root:root"
ie
"users": [
"default"
Ie
"vendor_data": {
"enabled": true,
"prefix": []
}
B
"cloud_name": "aws",
"distro": "ubuntu",
"distro_release": "focal",
"distro_version": "20.04",
"ds": {
"_doc": "EXPERIMENTAL: The structure and format of content scoped under the 'ds' key.
—may change in subsequent releases of cloud-init.",
"_metadata_api_version": "2016-09-02",
"dynamic": {
"instance_identity": {
"document": {
"accountId": "329910648901",
"architecture": "x86_64",

(continues on next page)

56 Chapter 2. Project and community

cloud-init, Release 24.1.3

(continued from previous page)
"availabilityZone": "us-east-1b",
"billingProducts": null,
"devpayProductCodes": null,
"imageId": "ami-02e8aa396f8be3b6d",
"instanceId": "i-0929128ff2f73a2f1",
"instanceType": "t2.micro",
"kernelld": null,
"marketplaceProductCodes": null,
"pendingTime": "2020-02-27T20:46:18Z",
"privateIp": "172.31.81.43",
"ramdiskId": null,
"region": "us-east-1",
"version": "2017-09-30"
1
"pkcs7": [
"MIAGCSqGSIb3DQ...",
"REDACTED",
"AhQUgqOiPWqPTVnT96tZE6L1XjjLHQAAAAAAAA==""
1,
"rsa2048": [
"MIAGCSqGSIb...",
"REDACTED",
"clYQvuE45xXm7Yreg3QtQbrP//owll1eZHj6s350AAAAAAAA="

1,

"signature": [
"dA+QV+LLCWCRNddnrK1leYmh2GvYo+t8urDkdgmDSsPi",
"REDACTED",

"kDT4ygyJLFkd3b4qgjAs="

]

}
e
"meta_data": {

"ami_id": "ami-02e8aa396f8be3b6d",
"ami_launch_index": "0",
"ami_manifest_path": "(unknown)",
"block_device_mapping": {

"ami": "/dev/sdal",

"root": "/dev/sdal"

Fo

"hostname": "ip-172-31-81-43.ec2.internal",
"instance_action": "none",

"instance_id": "i-0929128ff2f73a2f1",
"instance_type": "t2.micro",
"local_hostname": "ip-172-31-81-43.ec2.internal",
"local_ipv4"™: "172.31.81.43",

"mac": "12:7e:c9:93:29:af",

"metrics": {

"vhostmd": "<?xml version=\"1.0\" encoding=\"UTF-8\"7>"
Fo

"network": {

"interfaces": {

"macs": {

(continues on next page)

2.3. Explanation 57

cloud-init, Release 24.1.3

(continued from previous page)
"12:7e:¢c9:93:29:af": {

"device_number": "0",

"interface_id": "eni-0c07a0474339b801d",
"ipv4_associations": {

"3.89.187.177": "172.31.81.43"
Fg
"local_hostname": "ip-172-31-81-43.ec2.internal",
"local_ipv4s": "172.31.81.43",
"mac": "12:7e:¢9:93:29:af",
"owner_id": '"329910648901",
"public_hostname": "ec2-3-89-187-177.compute-1.amazonaws.com",
"public_ipv4s": "3.89.187.177",
"security_group_ids": "sg-0100038b68aa79986",
"security_groups": "launch-wizard-3",
"subnet_id": "subnet-04e2d12a",
"subnet_ipv4_cidr_block": "172.31.80.0/20",
"vpc_id": "vpc-210b4b5b",
"vpc_ipv4_cidr_block": "172.31.0.0/16",
"vpc_ipv4_cidr_blocks": "172.31.0.0/16"

}
}
3
Fo
"placement": {
"availability_zone": "us-east-1b"
}

rofile": "default-hvm",
"public_hostname": "ec2-3-89-187-177.compute-1.amazonaws.com",
"public_ipv4": "3.89.187.177",
"reservation_id": "r-0c481643d15766a02",
"security_groups": "launch-wizard-3",
"services": {
"domain": "amazonaws.com",
"partition": "aws"
}

}

B

"instance_id": "i-0929128ff2f73a2f1",

"kernel_release": "5.3.0-1010-aws",

"local_hostname": "ip-172-31-81-43",

"machine": "x86_64",

"platform”: "ec2",

"public_ssh_keys": [],

"python_version": "3.7.6",

"region": "us-east-1",

"sensitive_keys": [],

"subplatform": "metadata Chttp://169.254.169.254)",

"sys_info": {

"dist": [

"ubuntu",

"20.04",

"focal"

(continues on next page)

58 Chapter 2. Project and community

cloud-init, Release 24.1.3

(continued from previous page)

i
"platform": "Linux-5.3.0-1010-aws-x86_64-with-Ubuntu-20.04-focal",
"python": "3.7.6",
"release": "5.3.0-1010-aws",
"system": "Linux",
"uname": [
"Linux",
"ip-172-31-81-43",
"5.3.0-1010-aws",
"#11-Ubuntu SMP Thu Jan 16 07:59:32 UTC 2020",
"x86_64",
"x86_64"
e
"variant": "ubuntu"

e

"system_platform": "Linux-5.3.0-1010-aws-x86_64-with-Ubuntu-20.04-focal",
"userdata": "#cloud-config\nssh_import_id: [<my-launchpad-id>]\n...",
"vi": {
"_beta_keys": [
"subplatform"
i
"availability_zone": "us-east-1b",
"cloud_name": "aws",
"distro": "ubuntu",
"distro_release": "focal",
"distro_version": "20.04",
"instance_id": "i-0929128ff2f73a2f1",
"kernel": "5.3.0-1010-aws",
"local_hostname": "ip-172-31-81-43",
"machine": "x86_64",
"platform": "ec2",
"public_ssh_keys": [],
"python": "3.7.6",
"region": "us-east-1",
"subplatform": "metadata Chttp://169.254.169.254)",
"system_platform": "Linux-5.3.0-1010-aws-x86_64-with-Ubuntu-20.04-focal",

"variant": "ubuntu"
},
"variant": "ubuntu",
"vendordata": ""

}

2.3. Explanation 59

cloud-init, Release 24.1.3

2.3.7 Vendor data

Overview

Vendor data is data provided by the entity that launches an instance (e.g., the cloud provider). This data can be used to
customise the image to fit into the particular environment it is being run in.

Vendor data follows the same rules as user data, with the following caveats:

1. Users have ultimate control over vendor data. They can disable its execution or disable handling of specific parts
of multi-part input.

2. By default it only runs on first boot.

3. Vendor data can be disabled by the user. If the use of vendor data is required for the instance to run, then vendor
data should not be used.

4. User-supplied cloud-config is merged over cloud-config from vendor data.

Users providing cloud-config data can use the #cloud-config-jsonp method to more finely control their modifica-
tions to the vendor-supplied cloud-config. For example, if both vendor and user have provided runcmd then the default
merge handler will cause the user’s runcmd to override the one provided by the vendor. To append to runcmd, the user
could better provide multi-part input with a cloud-config-jsonp part like:

#cloud-config-jsonp
[{ "op": "add", "path": "/runcmd", "value": ["my", "command", "here"]}]

Further, we strongly advise vendors to not “be evil”. By evil, we mean any action that could compromise a system.
Since users trust you, please take care to make sure that any vendor data is safe, atomic, idempotent and does not put
your users at risk.

Input formats

Cloud-init will download and cache to filesystem any vendor data that it finds. Vendor data is handled exactly like
user data. This means that the vendor can supply multi-part input and have those parts acted on in the same way as
with user data.

The only differences are:

* Vendor-data-defined scripts are stored in a different location than user-data-defined scripts (to avoid namespace
collision).

e The user can disable part handlers via the cloud-config settings. For example, to disable handling of ‘part-
handlers’ in vendor data, the user could provide user data like this:

#cloud-config
vendordata: {excluded: 'text/part-handler'}

60 Chapter 2. Project and community

cloud-init, Release 24.1.3

Examples

You can find examples in the examples subdirectory.

Additionally, the tools directory contains write-mime-multipart, which can be used to easily generate MIME
multi-part files from a list of input files. That data can then be given to an instance.

See write-mime-multipart --help for usage.

2.3.8 Security

Security policy

The following documents the upstream cloud-init security policy.

Reporting

If a security bug is found, please send an email to cloud-init-security @lists.canonical.com . After the bug is received,
the issue is triaged within 2 working days of being reported and a response is sent to the reporter.

cloud-init-security

The cloud-init-security Launchpad team is a private, invite-only team used to discuss and coordinate security issues
with the project.

Any issues disclosed to the cloud-init-security mailing list are considered embargoed and should only be discussed
with other members of the cloud-init-security mailing list before the coordinated release date, unless specific exception
is granted by the administrators of the mailing list. This includes disclosure of any details related to the vulnerability
or the presence of a vulnerability itself. Violation of this policy may result in removal from the list for the company or
individual involved.

Evaluation

If the reported bug is deemed a real security issue a CVE is assigned by the Canonical Security Team as CVE Numbering
Authority (CNA).

If it is deemed a regular, non-security issue, the reporter will be asked to follow typical bug reporting procedures.

In addition to the disclosure timeline, the core Canonical cloud-init team will enlist the expertise of the Ubuntu Security
team for guidance on industry-standard disclosure practices as necessary.

If an issue specifically involves another distro or cloud vendor, additional individuals will be informed of the issue to
help in evaluation.

2.3. Explanation 61

mailto:cloud-init-security@lists.canonical.com

cloud-init, Release 24.1.3

Disclosure

Disclosure of security issues will be made with a public statement. Once the determined time for disclosure has arrived
the following will occur:

* A public bug is filed/made public with vulnerability details, CVE, mitigations and where to obtain the fix
* An email is sent to the public cloud-init mailing list

The disclosure timeframe is coordinated with the reporter and members of the cloud-init-security list. This depends
on a number of factors:

* The reporter might have their own disclosure timeline (e.g. Google Project Zero and many others use a 90-days
after initial report OR when a fix becomes public)

« It might take time to decide upon and develop an appropriate fix

* A distros might want extra time to backport any possible fixes before the fix becomes public
* A cloud may need additional time to prepare to help customers or implement a fix

* The issue might be deemed low priority

e May wish to align with an upcoming planned release

2.3.9 Performance
The analyze subcommand was added to cloud-init to help analyze cloud-init boot time performance. It is
loosely based on systemd-analyze, where there are four subcommands:

e blame

» show

¢ dump

* boot

Usage

The analyze command requires one of the four subcommands:

cloud-init analyze blame
cloud-init analyze show
cloud-init analyze dump
cloud-init analyze boot

e A o e

Availability

The analyze boot subcommand only works on operating systems that use systemd.

62 Chapter 2. Project and community

https://lists.launchpad.net/cloud-init/

cloud-init, Release 24.1.3

Subcommands

Blame

The blame subcommand matches systemd-analyze blame where it prints, in descending order, the units that took
the longest time to run. This output is highly useful for examining where cloud-init is spending its time.

[$ cloud-init analyze blame

Example output:

-- Boot Record 01 --
00.80300s (init-network/config-growpart)
00.64300s (init-network/config-resizefs)
00.62100s (init-network/config-ssh)
00.57300s (modules-config/config-grub_dpkg)
00.40300s (init-local/search-NoCloud)
00.38200s (init-network/config-users_groups)
00.19800s (modules-config/config-apt_configure)
00.03700s (modules-final/config-keys_to_console)
00.02100s (init-network/config-update_etc_hosts)
00.02100s (init-network/check-cache)
00.00800s (modules-final/config-ssh_authkey_fingerprints)
00.00800s (init-network/consume-vendor-data)
00.00600s (modules-config/config-timezone)
00.00500s (modules-final/config-final_message)
00.00400s (init-network/consume-user-data)
00.00400s (init-network/config-mounts)
00.00400s (init-network/config-disk_setup)
00.00400s (init-network/config-bootcmd)
00.00400s (init-network/activate-datasource)
00.00300s (init-network/config-update_hostname)
00.00300s (init-network/config-set_hostname)
00.00200s (modules-final/config-snappy)
00.00200s (init-network/config-rsyslog)
00.00200s (init-network/config-ca_certs)
00.00200s (init-local/check-cache)
00.00100s (modules-final/config-scripts_vendor)
00.00100s (modules-final/config-scripts_per_once)
00.00100s (modules-final/config-salt_minion)
00.00100s (modules-final/config-phone_home)
00.00100s (modules-final/config-package_update_upgrade_install)
00.00100s (modules-final/config-fan)
00.00100s (modules-config/config-ubuntu_pro)
00.00100s (modules-config/config-ssh_import_id)
00.00100s (modules-config/config-snap)
00.00100s (modules-config/config-set_passwords)
00.00100s (modules-config/config-runcmd)
00.00100s (modules-config/config-locale)
00.00100s (modules-config/config-byobu)
00.00100s (modules-config/config-apt_pipelining)
00.00100s (init-network/config-write_files)
00.00100s (init-network/config-seed_random)

(continues on next page)

2.3. Explanation 63

cloud-init, Release 24.1.3

(continued from previous page)

00.00000s (modules-final/config-ubuntu_drivers)
00.00000s (modules-final/config-scripts_user)
00.00000s (modules-final/config-scripts_per_instance)
00.00000s (modules-final/config-scripts_per_boot)
00.00000s (modules-final/config-puppet)

00.00000s (modules-final/config-power_state_change)
00.00000s (modules-final/config-mcollective)
00.00000s (modules-final/config-1xd)

00.00000s (modules-final/config-landscape)

00.00000s (modules-final/config-chef)

00.00000s (modules-config/config-snap_config)
00.00000s (modules-config/config-ntp)

00.00000s (modules-config/config-disable_ec2_metadata)
00.00000s (init-network/setup-datasource)

1 boot records analyzed

Show

The show subcommand is similar to systemd-analyze critical-chain which prints a list of units, the time they
started and how long they took. Cloud-init has five boot stages, and within each stage a number of modules may run
depending on configuration. cloudinit-analyze show will, for each boot, print this information and a summary of
the total time.

The following is an abbreviated example of the show subcommand:

[$ cloud-init analyze show }

Example output:

-- Boot Record 01 --
The total time elapsed since completing an event is printed after the "@" character.

The time the event takes is printed after the "+" character.

Starting stage: init-local

| " " ->no cache found @00.01700s +00.00200s

| ->found local data from DataSourceNoCloud @00.11000s +00.40300s
Finished stage: (init-local) 00.94200 seconds

Starting stage: init-network

| *->restored from cache with run check: DataSourceNoCloud [seed=/dev/sr®] [dsmode=net]..
-,@04.79500s +00.02100s

| ->setting up datasource @04.88900s +00.00000s

| "->reading and applying user-data @04.90100s +00.00400s

| ->reading and applying vendor-data @94.90500s +00.00800s
| ->activating datasource @04.95200s +00.00400s

Finished stage: (init-network) 02.72100 seconds

Starting stage: modules-config

| ->config-snap ran successfully @15.43100s +00.00100s

(continues on next page)

64 Chapter 2. Project and community

cloud-init, Release 24.1.3

(continued from previous page)

| "->config-runcmd ran successfully @16.22300s +00.00100s
| "->config-byobu ran successfully @16.23400s +00.00100s
Finished stage: (modules-config) 00.83500 seconds

Starting stage: modules-final
| *->config-snappy ran successfully @16.87400s +00.00200s
| "->config-package_update_upgrade_install ran successfully @16.87600s +00.00100s

| "->config-final_message ran successfully @16.93700s +00.00500s
| "->config-power_state_change ran successfully @16.94300s +00.00000s
Finished stage: (modules-final) 00.10300 seconds

Total Time: 4.60100 seconds

1 boot records analyzed

If additional boot records are detected then they are printed out from oldest to newest.

Dump

The dump subcommand simply dumps the cloud-init logs that the analyze module is performing its analysis on,
and returns a list of dictionaries that can be consumed for other reporting needs. Each element in the list is a boot entry.

[$ cloud-init analyze dump]

Example output:

[

{
"description": "starting search for local datasources",
"event_type": "start",
"name": "init-local",
"origin": "cloudinit",
"timestamp": 1567057578.037

}!

{
"description": "attempting to read from cache [check]",
"event_type": "start",
"name": "init-local/check-cache",
"origin": "cloudinit",
"timestamp": 1567057578.054

3,

{
"description": "no cache found",
"event_type": "finish",
"name": "init-local/check-cache",
"origin": "cloudinit",
"result": "SUCCESS",
"timestamp": 1567057578.056

1,

{

(continues on next page)

2.3. Explanation 65

cloud-init, Release 24.1.3

"description": "searching for local data from DataSourceNoCloud",
"event_type": "start",
"name": "init-local/search-NoCloud",
"origin": "cloudinit",
"timestamp": 1567057578.147
}’
{
"description": "found local data from DataSourceNoCloud",
"event_type": "finish",
"name": "init-local/search-NoCloud",
"origin": "cloudinit",
"result": "SUCCESS",
"timestamp": 1567057578.55
1
{
"description": "searching for local datasources",
"event_type": "finish",
"name": "init-local",
"origin": "cloudinit",
"result": "SUCCESS",
"timestamp": 1567057578.979
}’
{
"description": "searching for network datasources",
"event_type": "start",
"name": "init-network",
"origin": "cloudinit",
"timestamp": 1567057582.814
3
{
"description": "attempting to read from cache [trust]",
"event_type": "start",
"name": "init-network/check-cache",
"origin": "cloudinit",
"timestamp': 1567057582.832
}
{
"description": "config-power_state_change ran successfully",
"event_type": "finish",
"name": "modules-final/config-power_state_change",
"origin": "cloudinit",
"result": "SUCCESS",
"timestamp": 1567057594.98
I
{
"description": "running modules for final",
"event_type": "finish",
"name": "modules-final",
"origin": "cloudinit",

"result": "SUCCESS",
"timestamp": 1567057594.982

(continued from previous page)

(continues on next page)

66 Chapter 2. Project and community

cloud-init, Release 24.1.3

(continued from previous page)

Boot

The boot subcommand prints out kernel-related timestamps that are not included in any of the cloud-init logs.
There are three different timestamps that are presented to the user:

e kernel start
e kernel finish boot
e cloud-init start

This was added for additional clarity into the boot process that cloud-init does not have control over, to aid in
debugging performance issues related to cloud-init startup, and tracking regression.

[$ cloud-init analyze boot]

Example output:

-- Most Recent Boot Record --
Kernel Started at: 2019-08-29 01:35:37.753790
Kernel ended boot at: 2019-08-29 01:35:38.807407
Kernel time to boot (seconds): 1.053617000579834
Cloud-init activated by systemd at: 2019-08-29 01:35:43.992460
Time between Kernel end boot and Cloud-init activation (seconds): 5.185053110122681
Cloud-init start: 2019-08-29 08:35:45.867000
successful

Timestamp gathering

The following boot-related timestamps are gathered on demand when cloud-init analyze boot runs:
» Kernel startup gathered from system uptime
 Kernel finishes initialization from systemd UserSpaceMonotonicTimestamp property
* Cloud-init activation from the property InactiveExitTimestamp of the cloud-init local systemd unit

In order to gather the necessary timestamps using systemd, running the following command will gather the
UserspaceTimestamp:

[$ systemct]l show -p UserspaceTimestampMonotonic]

Example output:

[UserspaceTimestampMonotonic:9892 79 J

The UserspaceTimestamp tracks when the init system starts, which is used as an indicator of the kernel finishing
initialisation.

Running the following command will gather the InactiveExitTimestamp:

2.3. Explanation 67

cloud-init, Release 24.1.3

[$ systemctl show cloud-init-local -p InactiveExitTimestampMonotonic

Example output:

[InactiveExitTimestampMonotonic:4493 126

The InactiveExitTimestamp tracks when a particular systemd unit transitions from the Inactive to Active state,
which can be used to mark the beginning of systemd’s activation of cloud-init.

Currently this only works for distros that use systemd as the init process. We will be expanding support for other distros
in the future and this document will be updated accordingly.

If systemd is not present on the system, dmesg is used to attempt to find an event that logs the beginning of the init
system. However, with this method only the first two timestamps are able to be found; dmesg does not monitor userspace
processes, so no cloud-init start timestamps are emitted — unlike when using systemd.

2.3.10 Failure states

Cloud-init has multiple modes of failure. This page describes these modes and how to gather information about failures.

Critical failure
Critical failures happens when cloud-init experiences a condition that it cannot safely handle. When this happens,
cloud-init may be unable to complete, and the instance is likely to be in an unknown broken state.
Cloud-init experiences critical failure when:
* there is a major problem with the cloud image that is running cloud-init
* there is a severe bug in cloud-init
When this happens, error messages will be visible in output of cloud-init status --long within the 'error'.

The same errors will also be located under the key nested under the module-level keys that store information related to
each stage of cloud-init: init-local, init, modules-config, modules-final.

Recoverable failure

In the case that cloud-init is able to complete yet something went wrong, cloud-init has experienced a “recoverable
failure”. When this happens, the service will return with exit code 2, and error messages will be visible in the output
of cloud-init status --long under the top level recoverable_errors and error keys.

To identify which stage an error came from, one can check under the module-level keys: init-local, init,
modules-config, modules-final for the same error keys.

See this more detailed explanation for to learn how to use cloud-init’s exported errors.

68 Chapter 2. Project and community

cloud-init, Release 24.1.3

Cloud-init error codes

Cloud-init’s status subcommand is useful for understanding which type of error cloud-init experienced while running.
The return code will be one of the following:

0 - success
1 - unrecoverable error
2 - recoverable error

If cloud-init status exits with exit code 1, cloud-init experienced critical failure and was unable to recover. In this
case, something is likely seriously wrong with the system, or cloud-init has experienced a serious bug. If you believe
that you have experienced a serious bug, please file a bug report.

If cloud-init exits with exit code 2, cloud-init was able to complete gracefully, however something went wrong and the
user should investigate.

See this more detailed explanation for more information on cloud-init’s status.

Where to next?

See our more detailed guide for a detailed guide to debugging cloud-init.

2.3.11 Exported errors

Cloud-init makes internal errors available to users for debugging. These errors map to logged errors and may be useful
for understanding what happens when cloud-init doesn’t do what you expect.

Aggregated errors

When a recoverable error occurs, the internal cloud-init state information is made visible under a top level aggregate
key recoverable_errors with errors sorted by error level:

$ cloud-init status --format json

{

"boot_status_code": "enabled-by-generator",

"config": {...},

"datasource": "",

"detail": "Cloud-init enabled by systemd cloud-init-generator",

"errors": [],

"extended_status": "degraded done",

"init": {...},

"last_update": "",

"recoverable_errors":

{

"WARNING": [
"Failed at merging in cloud config part from p-01: empty cloud config",
"No template found in /etc/cloud/templates for template source.deb822",
"No template found in /etc/cloud/templates for template sources.list",
"No template found, not rendering /etc/apt/soures.list.d/ubuntu.source"
]
e
"status": "done"
}

2.3. Explanation 69

cloud-init, Release 24.1.3

Reported recoverable error messages are grouped by the level at which they are logged. Complete list of levels in order
of increasing criticality:

WARNING
DEPRECATED
ERROR
CRITICAL

Each message has a single level. In cloud-init’s log files, the level at which logs are reported is configurable. These
messages are exported via the 'recoverable_errors' key regardless of which level of logging is configured.

Per-stage errors

The keys errors and recoverable_errors are also exported for each stage to allow identifying when recoverable
and non-recoverable errors occurred.

$ cloud-init status --format json

{
"boot_status_code": "enabled-by-generator",
"config":
{
"WARNING": [
"No template found in /etc/cloud/templates for template source.deb822",
"No template found in /etc/cloud/templates for template sources.list",
"No template found, not rendering /etc/apt/soures.list.d/ubuntu.source"
]
e
"datasource": "",
"detail": "Cloud-init enabled by systemd cloud-init-generator",
"errors": [],
"extended_status": "degraded done",
"init":
{
"WARNING": [
"Failed at merging in cloud config part from p-01: empty cloud config",
]
e
"last_update": "",
"recoverable_errors":
{
"WARNING": [
"Failed at merging in cloud config part from p-01: empty cloud config",
"No template found in /etc/cloud/templates for template source.deb822",
"No template found in /etc/cloud/templates for template sources.list",
"No template found, not rendering /etc/apt/soures.list.d/ubuntu.source"
]
e
"status": "done"
3

Note: Only completed cloud-init stages are listed in the output of cloud-init status --format json.

70 Chapter 2. Project and community

cloud-init, Release 24.1.3

The JSON representation of cloud-init boot stages (in run order) is:

"init-local"
"init"
"modules-config"
"modules-final"

Limitations of exported errors
» Exported recoverable errors represent logged messages, which are not guaranteed to be stable between releases.
The contents of the 'errors' and 'recoverable_errors' keys are not guaranteed to have stable output.

» Exported errors and recoverable errors may occur at different stages since users may reorder configuration mod-
ules to run at different stages via cloud.cfg.

Where to next?

See here for a detailed guide to debugging cloud-init.

2.3.12 Why did cloud-init status start returning exit code 2?

Cloud-init introduced a new error code in 23.4. This page describes the purpose of this change and gives some context
for why this change was made.

Background
Since cloud-init provides access to cloud instances, the paradigm for handling errors was “log errors, but proceed”.
Exiting on failure conditions doesn’t make sense when that may prevent one from accessing the system to debug it.

Since cloud-init’s behavior is heavily tied to specific cloud platforms, reproducing cloud-init bugs without exactly
reproducing a specific cloud environment is often impossible, and often requires guesswork. To make debugging
cloud-init possible without reproducing exactly, cloud-init logs are quite verbose.

Pain points

1) Invalid configurations were historically ignored.

2) Log verbosity is unfriendly to end users that may not know what to look for. Verbose logs means users often
ignore real errors.

3) Cloud-init’s reported status was only capable of telling the user whether cloud-init crashed. Cloud-init would
report a status of “done” in the following cases:

e auser’s configuration was invalid

« if the operating system or cloud environment experienced some error that prevented cloud-init from con-
figuring the instance

* if cloud-init internally experienced an error - all of these previously reported a status of “done”.

2.3. Explanation 71

cloud-init, Release 24.1.3

Efforts to improve cloud-init

Several changes have been introduced to cloud-init to address the pain points described above.

JSON schema

Cloud-init has defined a JSON schema which fully documents the user-data cloud-config. This JSON schema may be
used in several different ways:

Text editor integration

Thanks to yaml-language-server, cloud-init’s JSON schema may be used for YAML syntax checking, warnings when
invalid keys are used, and autocompletion. Several different text editors are capable of this. See this blog post on
configuring this for neovim, or for VScode one can install the extension and then a file named cloud-config.yaml
will automatically use cloud-init’s JSON schema.

Cloud-init schema subcommand

The cloud-init package includes a cloud-init subcommand, cloud-init schema which uses the schema to validate either
the configuration passed to the instance that you are running the command on, or to validate an arbitrary text file
containing a configuration.

Return codes

Cloud-init historically used two return codes from the cloud-init status subcommand: O to indicate success and 1
to indicate failure. These return codes lacked nuance. Return code O (success) included the in-between when something
went wrong, but cloud-init was able to finish.

Many users of cloud-init run cloud-init status --wait and expect that when complete, cloud-init has finished.
Since cloud-init is not guaranteed to succeed, users should also be check the return code of this command.

As of 23.4, errors that do not crash cloud-init will have an exit code of 2. Exit code of 1 means that cloud-init crashed,
and an exit code O more correctly means that cloud-init succeeded. Anyone that previously checked for exit code 0
should probably update their assumptions in one of the following two ways:

Users that wish to take advantage of cloud-init’s error reporting capabilities should check for exit code of 2 from
cloud-init status. An example of this:

from logging import getLogger
from json import loads

from subprocess import run
from sys import exit

logger = getlLogger(__name__)
completed = run("cloud-init status --format json")
output = loads(completed.stdout)

if 2 == completed.return_code:
something bad might have happened - we should check it out
logger.warning("cloud-init experienced a recoverable error")
logger.warning("status: ", output.get("extended_status"))
(continues on next page)

72 Chapter 2. Project and community

https://github.com/redhat-developer/yaml-language-server
https://phoenix-labs.xyz/blog/setup-neovim-cloud-init-completion/
https://phoenix-labs.xyz/blog/setup-neovim-cloud-init-completion/
https://marketplace.visualstudio.com/items?itemName=redhat.vscode-yaml

cloud-init, Release 24.1.3

(continued from previous page)

logger.warning("recoverable error: , output.get('"recoverable_errors"))
elif 1 == completed.return_code:

cloud-init completely failed

logger.error("cloud-init crashed, all bets are off!")

exit(1l)

Users that wish to use ignore cloud-init’s errors and check the return code in a backwards-compatible way should check
that the return code is not equal to 1. This will provide the same behavior before and after the changed exit code. See
an example of this:

from logging import getlogger
from subprocess import run
from sys import exit

logger = getlLogger(__name__)
completed = run("cloud-init status --format json")

if 1 == completed.return_code:
cloud-init completely failed
logger.error("cloud-init crashed, all bets are off!")
exit(1)

cloud-init might have failed, but this code ignores that possibility
in preference of backwards compatibility

See our explanation of failure states for more information.

2.4 Reference

Our reference section contains support information for cloud-init. This includes details on the network requirements,
API definitions, support matrices and so on.

2.4.1 Module reference

Deprecation schedule and versions

Keys may be documented as deprecated, new, or changed. This allows cloud-init to evolve as requirements change,
and to adopt better practices without maintaining design decisions indefinitely.

Keys that have been marked as deprecated or changed may be removed or changed 5 years from the date of deprecation.
For example, a key that is deprecated in version 22 .1 (which is the first release in 2022) is scheduled to be removed in
27.1 (first release in 2027). Use of deprecated keys may cause warnings in the logs. In the case that a key’s expected
value changes, the key will be marked changed with a date. A 5 year timeline may also be expected for changed keys.

2.4. Reference 73

cloud-init, Release 24.1.3

Ansible

Configure ansible for instance

Summary

This module provides ansible integration for augmenting cloud-init’s configuration of the local node.

This module installs ansible during boot and then uses ansible-pull to run the playbook repository at the remote
URL.

Internal name: cc_ansible
Module frequency: once-per-instance
Supported distros: all

Activate only on keys: ansible

Config schema

« ansible: (object)

install_method: (distro/pip) The type of installation for ansible. It can be one of the following values:
% distro

% pip

run_user: (string) User to run module commands as. If install_method: pip, the pip install runs as this
user as well.

ansible_config: (string) Sets the ANSIBLE_CONFIG environment variable. If set, overrides default con-
fig.

setup_controller: (object)

* repositories: (array of object)
- Each object in repositories list supports the following keys:
- path: (string)
- source: (string)

% run_ansible: (array)
- Each object in run_ansible list supports the following keys:
- playbook_name: (string)
- playbook_dir: (string)
- become_password_file: (string)
- connection_password_file: (string)
- list_hosts: (boolean)
- syntax_check: (boolean)
- timeout: (number)

- vault_id: (string)

74 Chapter 2. Project and community

cloud-init, Release 24.1.3

- vault_password_file: (string)
- background: (number)

- check: (boolean)

- diff: (boolean)

- module_path: (string)

- poll: (number)

- args: (string)

- extra_vars: (string)

- forks: (number)

- inventory: (string)

- scp_extra_args: (string)
- sftp_extra_args: (string)
- private_key: (string)

- connection: (string)

- module_name: (string)

- sleep: (string)

- tags: (string)

- skip_tags: (string)

— galaxy: (object)

%

actions: (array of array)

— package_name: (string)

— pull: (object)

*k

*

*

*k

accept_host_Kkey: (boolean)
clean: (boolean)

full: (boolean)

diff: (boolean)
ssh_common_args: (string)
scp_extra_args: (string)
sftp_extra_args: (string)
private_key: (string)
checkout: (string)
module_path: (string)
timeout: (string)

url: (string)

connection: (string)

vault_id: (string)

2.4. Reference

75

cloud-init, Release 24.1.3

+ vault_password_file: (string)
* verify_commit: (boolean)

* inventory: (string)

* module_name: (string)

% sleep: (string)

% tags: (string)

* skip_tags: (string)

+ playbook_name: (string)

Examples

--- Examplel ---

ansible:
package_name: ansible-core
install_method: distro
pull:
url: "https://github.com/holmanb/vmboot.git"
playbook_name: ubuntu.yml

--- Example2 ---

ansible:
package_name: ansible-core
install_method: pip
pull:
url: "https://github.com/holmanb/vmboot.git"
playbook_name: ubuntu.yml

APK Configure

Configure apk repositories file

Summary

This module handles configuration of the /etc/apk/repositories file.

Note: To ensure that apk configuration is valid yaml, any strings containing special characters, especially : should be
quoted.

Internal name: cc_apk_configure
Module frequency: once-per-instance
Supported distros: alpine

Activate only on keys: apk_repos

76 Chapter 2. Project and community

cloud-init, Release 24.1.3

Config schema

» apk_repos: (object)

— preserve_repositories: (boolean) By default, cloud-init will generate a new repositories file /etc/
apk/repositories based on any valid configuration settings specified within a apk_repos section of
cloud config. To disable this behavior and preserve the repositories file from the pristine image, set
preserve_repositories to true.

The preserve_repositories option overrides all other config keys that would alter /etc/
apk/repositories.

— alpine_repo: (null/object)

% base_url: (string) The base URL of an Alpine repository, or mirror, to download official packages
from. If not specified then it defaults to https://alpine.global.ssl.fastly.net/alpine

* community_enabled: (boolean) Whether to add the Community repo to the repositories file. By
default the Community repo is not included.

% testing_enabled: (boolean) Whether to add the Testing repo to the repositories file. By default the
Testing repo is not included. It is only recommended to use the Testing repo on a machine running the
Edge version of Alpine as packages installed from Testing may have dependencies that conflict with
those in non-Edge Main or Community repos.

% version: (string) The Alpine version to use (e.g. v3.12 or edge)

— local_repo_base_url: (string) The base URL of an Alpine repository containing unofficial packages

Examples

--- Examplel ---

Keep the existing /etc/apk/repositories file unaltered.
apk_repos:
preserve_repositories: true

--- Example2 ---

Create repositories file for Alpine v3.12 main and community
using default mirror site.
apk_repos:
alpine_repo:
community_enabled: true
version: 'v3.12'

--- Example3 ---

Create repositories file for Alpine Edge main, community, and
testing using a specified mirror site and also a local repo.
apk_repos:
alpine_repo:
base_url: 'https://some-alpine-mirror/alpine’
community_enabled: true
testing_enabled: true

(continues on next page)

2.4. Reference 77

cloud-init, Release 24.1.3

(continued from previous page)
version: 'edge'
local_repo_base_url: 'https://my-local-server/local-alpine'

Apt Configure

Configure apt for the user

Summary

This module handles both configuration of apt options and adding source lists. There are configuration options such as
apt_get_wrapper and apt_get_command that control how cloud-init invokes apt-get. These configuration options
are handled on a per-distro basis, so consult documentation for cloud-init’s distro support for instructions on using these
config options.

By default, cloud-init will generate default apt sources information in deb822 format at /etc/apt/sources.list.
d/<distro>.sources. When the value of sources_list does not appear to be deb822 format, or stable distribution
releases disable deb822 format, /etc/apt/sources.list will be written instead.

Note: To ensure that apt configuration is valid yaml, any strings containing special characters, especially : should be
quoted.

Note: For more information about apt configuration, see the Additional apt configuration example.

Internal name: cc_apt_configure
Module frequency: once-per-instance

Supported distros: ubuntu, debian

Config schema

 apt: (object)

— preserve_sources_list: (boolean) By default, cloud-init will generate a new sources list in /etc/apt/
sources.list.d based on any changes specified in cloud config. To disable this behavior and preserve
the sources list from the pristine image, set preserve_sources_list to true.

The preserve_sources_list option overrides all other config keys that would alter sources.list or
sources.list.d, except for additional sources to be added to sources.list.d.

— disable_suites: (array of string) Entries in the sources list can be disabled using disable_suites, which
takes a list of suites to be disabled. If the string $RELEASE is present in a suite in the disable_suites
list, it will be replaced with the release name. If a suite specified in disable_suites is not present in
sources.list it will be ignored. For convenience, several aliases are provided for™* disable_suites™:

% updates => $RELEASE-updates
* backports => $RELEASE-backports
% security => $RELEASE-security

% proposed => $RELEASE-proposed

78 Chapter 2. Project and community

cloud-init, Release 24.1.3

* release => $RELEASE.

When a suite is disabled using disable_suites, its entry in sources.list is not deleted; it is just
commented out.

— primary: (array of object) The primary and security archive mirrors can be specified using the primary
and security keys, respectively. Both the primary and security keys take a list of configs, allowing
mirrors to be specified on a per-architecture basis. Each config is a dictionary which must have an entry
for arches, specifying which architectures that config entry is for. The keyword default applies to any
architecture not explicitly listed. The mirror url can be specified with the uri key, or a list of mirrors to
check can be provided in order, with the first mirror that can be resolved being selected. This allows the
same configuration to be used in different environment, with different hosts used for a local APT mirror. If
no mirror is provided by uri or search, search_dns may be used to search for dns names in the format
<distro>-mirror in each of the following:

% fqdn of this host per cloud metadata,
% localdomain,
% domains listed in /etc/resolv.conf.

If there is a dns entry for <distro>-mirror, then it is assumed that there is a distro mirror at http://
<distro>-mirror.<domain>/<distro>. If the primary key is defined, but not the security key, then
then configuration for primary is also used for security. If search_dns is used for the security key,
the search pattern will be <distro>-security-mirror.

Each mirror may also specify a key to import via any of the following optional keys:
% keyid: a key to import via shortid or fingerprint.
* key: araw PGP key.
keyserver: alternate keyserver to pull keyid key from.

If no mirrors are specified, or all lookups fail, then default mirrors defined in the datasource are used. If
none are present in the datasource either the following defaults are used:

% primary => http://archive.ubuntu.com/ubuntu.
* security => http://security.ubuntu.com/ubuntu
% Each object in primary list supports the following keys:
% arches: (array of string)
% uri: (string)
% search: (array of string)
* search_dns: (boolean)
* keyid: (string)
% key: (string)
% keyserver: (string)
— security: (array of object) Please refer to the primary config documentation
+ Each object in security list supports the following keys:
% arches: (array of string)
% uri: (string)

% search: (array of string)

2.4. Reference 79

cloud-init, Release 24.1.3

% search_dns: (boolean)
keyid: (string)
% key: (string)

% keyserver: (string)

— add_apt_repo_match: (string) All source entries in apt-sources that match regex in

add_apt_repo_match will be added to the system using add-apt-repository. If
add_apt_repo_match is not specified, it defaults to A [\w-]+:\w

debconf_selections: (object) Debconf additional configurations can be specified as a dictionary under the
debconf_selections config key, with each key in the dict representing a different set of configurations.
The value of each key must be a string containing all the debconf configurations that must be applied. We
will bundle all of the values and pass them to debconf-set-selections. Therefore, each value line must
be a valid entry for debconf-set-selections, meaning that they must possess for distinct fields:

pkgname question type answer
Where:
% pkgname is the name of the package.
% question the name of the questions.
% type is the type of question.
% answer is the value used to answer the question.
For example: ippackage ippackage/ip string 127.0.01
AN+$: (string)

sources_list: (string) Specifies a custom template for rendering sources.list . If no sources_list
template is given, cloud-init will use sane default. Within this template, the following strings will be re-
placed with the appropriate values:

$MIRROR
$RELEASE
% $PRIMARY
% $SECURITY
$KEY_FILE

conf: (string) Specify configuration for apt, such as proxy configuration. This configuration is specified as
a string. For multi-line APT configuration, make sure to follow YAML syntax.

https_proxy: (string) More convenient way to specify https APT proxy. https proxy url is specified in the
format https://[[user][:pass]@]host[:port]/.

http_proxy: (string) More convenient way to specify http APT proxy. http proxy url is specified in the
format http://[[user][:pass]@]host[:port]/.

proxy: (string) Alias for defining a http APT proxy.

ftp_proxy: (string) More convenient way to specify ftp APT proxy. ftp proxy url is specified in the format
ftp://[[user][:pass]@]host[:port]/.

sources: (object) Source list entries can be specified as a dictionary under the sources config key, with
each key in the dict representing a different source file. The key of each source entry will be used as an id
that can be referenced in other config entries, as well as the filename for the source’s configuration under
/etc/apt/sources.list.d. If the name does not end with .1list, it will be appended. If there is no

80

Chapter 2. Project and community

cloud-init, Release 24.1.3

configuration for a key in sources, no file will be written, but the key may still be referred to as an id in
other sources entries.

Each entry under sources is a dictionary which may contain any of the following optional keys: - source:
a sources.list entry (some variable replacements apply). - keyid: a key to import via shortid or fingerprint.
- key: araw PGP key. - keyserver: alternate keyserver to pull keyid key from. - £ilename: specify the
name of the list file. - append: If true, append to sources file, otherwise overwrite it. Default: true.

The source key supports variable replacements for the following strings:
% $MIRROR
% $PRIMARY
% $SECURITY

*

$RELEASE
% $KEY_FILE
A+8$: (object)

*

- source: (string)

- keyid: (string)

- key: (string)

- keyserver: (string)
- filename: (string)

- append: (boolean)

Examples

--- Examplel ---

apt:
preserve_sources_list: false
disable_suites:
- $RELEASE-updates
- backports
- $RELEASE
- mysuite
primary:
- arches:
- amd64
- 1386
- default
uri: 'http://us.archive.ubuntu.com/ubuntu’
search:
- 'http://cool.but-sometimes-unreachable.com/ubuntu'
- 'http://us.archive.ubuntu.com/ubuntu'’
search_dns: false
- arches:
- s390x
- arm64
uri: 'http://archive-to-use-for-arm64.example.com/ubuntu’

(continues on next page)

2.4. Reference 81

cloud-init, Release 24.1.3

(continued from previous page)

security:
- arches:
- default
search_dns: true
sources_list: |
deb $MIRROR $RELEASE main restricted
deb-src $MIRROR $RELEASE main restricted
deb $PRIMARY $RELEASE universe restricted
deb $SECURITY $RELEASE-security multiverse
debconf_selections:
setl: the-package the-package/some-flag boolean true

conf: |
APT {
Get {
Assume-Yes 'true';
Fix-Broken 'true';
h;
b

proxy: 'http://[[user][:pass]@]lhost[:port]/"'
http_proxy: 'http://[[user][:pass]@]host[:port]/'
ftp_proxy: 'ftp://[[user][:pass]@]host[:port]/’
https_proxy: 'https://[[user][:pass]@]host[:port]/’
sources:
sourcel:

keyid: 'keyid'

keyserver: 'keyserverurl'

source: 'deb [signed-by=$KEY_FILE] http://<url>/ bionic main'

source2:
source: 'ppa:<ppa-name>'

source3:
source: 'deb $MIRROR $RELEASE multiverse'
key: |

source4:
source: 'deb $MIRROR $RELEASE multiverse'
append: false

key: |
—————— BEGIN PGP PUBLIC KEY BLOCK-------
<key data>
—————— END PGP PUBLIC KEY BLOCK-------
--- Example2 ---

cloud-init version 23.4 will generate a deb822 formatted sources
file at /etc/apt/sources.list.d/<distro>.sources instead of
/etc/apt/sources.list when ‘sources_list content is deb822

format.
apt:
sources_list: |
Types: deb

(continues on next page)

82 Chapter 2. Project and community

cloud-init, Release 24.1.3

(continued from previous page)

Apt Pipelining

Configure apt pipelining

Summary

This module configures apt’s Acquite: :http: :Pipeline-Depth option, which controls how apt handles HTTP
pipelining. It may be useful for pipelining to be disabled, because some web servers, such as S3 do not pipeline
properly (LP: #948461).

Value configuration options for this module are:
¢ 0s: (Default) use distro default
» false disable pipelining altogether
* <number>: Manually specify pipeline depth. This is not recommended.
Internal name: cc_apt_pipelining
Module frequency: once-per-instance
Supported distros: ubuntu, debian

Activate only on keys: apt_pipelining

Config schema

 apt_pipelining: (integer/boolean/string)

Examples

--- Examplel ---

apt_pipelining: false
--- Example2 ---

apt_pipelining: os
--- Example3 ---

apt_pipelining: 3

2.4. Reference 83

cloud-init, Release 24.1.3

Bootcmd

Run arbitrary commands early in the boot process

Summary

This module runs arbitrary commands very early in the boot process, only slightly after a boothook would run. This is
very similar to a boothook, but more user friendly. The environment variable INSTANCE_ID will be set to the current
instance id for all run commands. Commands can be specified either as lists or strings. For invocation details, see
runcmd.

Note: bootcmd should only be used for things that could not be done later in the boot process.

Note: when writing files, do not use /tmp dir as it races with systemd-tmpfiles-clean LP: #1707222. Use /run/somedir
instead.

Internal name: cc_bootcmd
Module frequency: always
Supported distros: all

Activate only on keys: bootcmd

Config schema

* bootcemd: (array of (array of string/string))

Examples

--- Examplel ---

bootcmd:
- echo 192.168.1.130 us.archive.ubuntu.com > /etc/hosts
- [cloud-init-per, once, mymkfs, mkfs, /dev/vdb]

Byobu

Enable/disable byobu system wide and for default user

84 Chapter 2. Project and community

cloud-init, Release 24.1.3

Summary
This module controls whether byobu is enabled or disabled system wide and for the default system user. If byobu is to
be enabled, this module will ensure it is installed. Likewise, if it is to be disabled, it will be removed if installed.
Valid configuration options for this module are:

* enable-system: enable byobu system wide

* enable-user: enable byobu for the default user

e disable-system: disable byobu system wide

* disable-user: disable byobu for the default user

* enable: enable byobu both system wide and for default user

e disable: disable byobu for all users

* user: alias for enable-user

e system: alias for enable-system
Internal name: cc_byobu
Module frequency: once-per-instance

Supported distros: ubuntu, debian

Config schema

¢ byobu_by_default: (enable-system/enable-user/disable-system/disable-user/enable/disable/user/system)

Examples

--- Examplel ---

byobu_by_default: enable-user
--- Example2 ---

byobu_by_default: disable-system

CA Certificates

Add ca certificates

Summary

This module adds CA certificates to the system’s CA store and updates any related files using the appropriate OS-
specific utility. The default CA certificates can be disabled/deleted from use by the system with the configuration
option remove_defaults.

Note: certificates must be specified using valid yaml. in order to specify a multiline certificate, the yaml multiline list
syntax must be used

2.4. Reference 85

cloud-init, Release 24.1.3

Note: Alpine Linux requires the ca-certificates package to be installed in order to provide the
update-ca-certificates command.

Internal name: cc_ca_certs
Module frequency: once-per-instance

Supported distros: alpine, debian, fedora, rhel, opensuse, opensuse-microos, opensuse-tumbleweed, opensuse-leap,
sle_hpc, sle-micro, sles, ubuntu, photon

Activate only on keys: ca_certs, ca-certs

Config schema

* ca_certs: (object)
— remove-defaults: (boolean)
Deprecated in version 22.3. Use “‘remove_defaults *" instead.
— remove_defaults: (boolean) Remove default CA certificates if true. Default: false
— trusted: (array of string) List of trusted CA certificates to add.
* ca-certs: (object)
Deprecated in version 22.3. Use “‘ca_certs " instead.
— remove-defaults: (boolean)
Deprecated in version 22.3. Use ‘‘remove_defaults " instead.
— remove_defaults: (boolean) Remove default CA certificates if true. Default: false

— trusted: (array of string) List of trusted CA certificates to add.

Examples

--- Examplel ---

ca_certs:
remove_defaults: true
trusted:
- single_line_cert

86 Chapter 2. Project and community

cloud-init, Release 24.1.3

Chef

module that configures, starts and installs chef

Summary

This module enables chef to be installed (from packages, gems, or from omnibus). Before this occurs, chef configuration
is written to disk (validation.pem, client.pem, firstboot.json, client.rb), and required directories are created (/etc/chef
and /var/log/chef and so-on). If configured, chef will be installed and started in either daemon or non-daemon mode.
If run in non-daemon mode, post run actions are executed to do finishing activities such as removing validation.pem.

Internal name: cc_chef

Module frequency: always

Supported

distros: all

Activate only on keys: chef

Config schema

e chef:

(object)

directories: (array of string) Create the necessary directories for chef to run. By default, it creates the
following directories:

* /etc/chef

% /var/log/chef

% /var/lib/chef

% /var/cache/chef

* /var/backups/chef
% /var/run/chef

validation_cert: (string) Optional string to be written to file validation_key. Special value system means
set use existing file.

validation_key: (string) Optional path for validation_cert. default to /etc/chef/validation.pem

firstboot_path: (string) Path to write run_list and initial_attributes keys that should also be present in this
configuration, defaults to /etc/chef/firstboot. json

exec: (boolean) Set true if we should run or not run chef (defaults to false, unless a gem installed is requested
where this will then default to true).

client_Kkey: (string) Optional path for client_cert. Default: /etc/chef/client.pem.

encrypted_data_bag_secret: (string) Specifies the location of the secret key used by chef to encrypt data
items. By default, this path is set to null, meaning that chef will have to look at the path /etc/chef/
encrypted_data_bag_secret for it.

environment: (string) Specifies which environment chef will use. By default, it will use the _default
configuration.

file_backup_path: (string) Specifies the location in which backup files are stored. By default, it uses the
/var/backups/chef location.

2.4. Reference 87

cloud-init, Release 24.1.3

file_cache_path: (string) Specifies the location in which chef cache files will be saved. By default, it uses
the /var/cache/chef location.

— json_attribs: (string) Specifies the location in which some chef json data is stored. By default, it uses the

/etc/chef/firstboot. json location.

log_level: (string) Defines the level of logging to be stored in the log file. By default this value is set to
:info.

log_location: (string) Specifies the location of the chef log file. By default, the location is specified at
/var/log/chef/client.log.

node_name: (string) The name of the node to run. By default, we will use th instance id as the node name.

omnibus_url: (string) Omnibus URL if chef should be installed through Omnibus. By default, it uses the
https://www.chef.io/chef/install.sh.

omnibus_url_retries: (integer) The number of retries that will be attempted to reach the Omnibus URL.
Default: 5.

omnibus_version: (string) Optional version string to require for omnibus install.

pid_file: (string) The location in which a process identification number (pid) is saved. By default, it saves
in the /var/run/chef/client.pid location.

server_url: (string) The URL for the chef server
show_time: (boolean) Show time in chef logs

ssl_verify_mode: (string) Set the verify mode for HTTPS requests. We can have two possible values for
this parameter:

% :verify_none: No validation of SSL certificates.
% :verify_peer: Validate all SSL certificates.
By default, the parameter is set as :verify_none.

validation_name: (string) The name of the chef-validator key that Chef Infra Client uses to access the
Chef Infra Server during the initial Chef Infra Client run.

force_install: (boolean) If set to true, forces chef installation, even if it is already installed.
initial_attributes: (object of string) Specify a list of initial attributes used by the cookbooks.

install_type: (packages/gems/omnibus) The type of installation for chef. It can be one of the following
values:

* packages
* gems
% omnibus
run_list: (array of string) A run list for a first boot json.

chef _license: (string) string that indicates if user accepts or not license related to some of chef products

88

Chapter 2. Project and community

cloud-init, Release 24.1.3

Examples

--- Examplel ---

chef:
directories:

- /etc/chef

- /var/log/chef
validation_cert: system
install_type: omnibus
initial_attributes:

apache:

prefork:
maxclients: 100
keepalive: off
run_list:

- recipe[apache2]

- role[db]
encrypted_data_bag_secret: /etc/chef/encrypted_data_bag_secret
environment: _default
log_level: :auto
omnibus_url_retries: 2
server_url: https://chef.yourorg.com:4000
ssl_verify mode: :verify_peer
validation_name: yourorg-validator

Disable EC2 Metadata

Disable AWS EC2 Metadata

Summary

This module can disable the ec2 datasource by rejecting the route to 169.254.169.254, the usual route to the data-

source. This module is disabled by default.
Internal name: cc_disable_ec2_metadata
Module frequency: always

Supported distros: all

Activate only on keys: disable_ec2_metadata

2.4. Reference

89

cloud-init, Release 24.1.3

Config schema

¢ disable_ec2_metadata: (boolean) Set true to disable IPv4 routes to EC2 metadata. Default: false

Examples

--- Examplel ---

disable_ec2_metadata: true

Disk Setup

Configure partitions and filesystems

Summary

This module is able to configure simple partition tables and filesystems.

Note: for more detail about configuration options for disk setup, see the disk setup example

Note: if a swap partition is being created via disk_setup then a fs_entry entry is also needed in order for mkswap
to be run, otherwise when swap activation is later attempted it will fail.

For convenience, aliases can be specified for disks using the device_aliases config key, which takes a dictionary of
alias: path mappings. There are automatic aliases for swap and ephemeral<X>, where swap will always refer to the
active swap partition and ephemeral<X> will refer to the block device of the ephemeral image.

Disk partitioning is done using the disk_setup directive. This config directive accepts a dictionary where each key
is either a path to a block device or an alias specified in device_aliases, and each value is the configuration options
for the device. File system configuration is done using the fs_setup directive. This config directive accepts a list of
filesystem configs.

Internal name: cc_disk_setup
Module frequency: once-per-instance
Supported distros: all

Activate only on keys: disk_setup, fs_setup

Config schema

* device_aliases: (object)

— <alias_name>: (string) Path to disk to be aliased by this name.
* disk_setup: (object)

— <alias name/path>: (object)

% table_type: (mbr/gpt) Specifies the partition table type, either mbr or gpt. Default: mbr.

90 Chapter 2. Project and community

cloud-init, Release 24.1.3

+ layout: (remove/boolean/array) If set to true, a single partition using all the space on the device will
be created. If set to false, no partitions will be created. If set to remove, any existing partition table
will be purged. Partitions can be specified by providing a list to 1layout, where each entry in the list
is either a size or a list containing a size and the numerical value for a partition type. The size for
partitions is specified in percentage of disk space, not in bytes (e.g. a size of 33 would take up 1/3 of
the disk space). The partition type defaults to ‘83’ (Linux partition), for other types of partition, such
as Linux swap, the type must be passed as part of a list along with the size. Default: false.

% overwrite: (boolean) Controls whether this module tries to be safe about writing partition tables or
not. If overwrite: false is set, the device will be checked for a partition table and for a file system
and if either is found, the operation will be skipped. If overwrite: true is set, no checks will be
performed. Using overwrite: true is dangerous and can lead to data loss, so double check that
the correct device has been specified if using this option. Default: false

 fs_setup: (array of object)

Examples

Each object in fs_setup list supports the following keys:
label: (string) Label for the filesystem.
filesystem: (string) Filesystem type to create. E.g., ext4 or btrfs

device: (string) Specified either as a path or as an alias in the format <alias name>.<y> where <y>
denotes the partition number on the device. If specifying device using the <alias name>.<partition
number> format, the value of partition will be overwritten.

partition: (string/integer/auto/any/none) The partition can be specified by setting partition to the
desired partition number. The partition option may also be set to auto, in which this module will
search for the existence of a filesystem matching the 1abel, filesystem and device of the fs_setup
entry and will skip creating the filesystem if one is found. The partition option may also be set to any, in
which case any filesystem that matches filesystem and device will cause this module to skip filesystem
creation for the fs_setup entry, regardless of label matching or not. To write a filesystem directly to
a device, use partition: none. partition: none will always write the filesystem, even when the
label and filesystem are matched, and overwrite is false.

overwrite: (boolean) If true, overwrite any existing filesystem. Using overwrite: true for filesys-
tems is dangerous and can lead to data loss, so double check the entry in £fs_setup. Default: false

replace_fs: (string) Ignored unless partition is auto or any. Default false.

extra_opts: (string/array of string) Optional options to pass to the filesystem creation command. Ignored
if you using cmd directly.

cmd: (string/array of string) Optional command to run to create the filesystem. Can include string sub-
stitutions of the other fs_setup config keys. This is only necessary if you need to override the default
command.

--- Examplel ---

device_aliases:
my_alias: /dev/sdb
swap_disk: /dev/sdc
disk_setup:
my_alias:
table_type: gpt
layout: [50, 50]

(continues on next page)

2.4. Reference 91

cloud-init, Release 24.1.3

(continued from previous page)

overwrite: true
swap_disk:
table_type: gpt
layout: [[100, 82]]
overwrite: true
/dev/sdd:
table_type: mbr
layout: true
overwrite: true
fs_setup:
- label: fsi1
filesystem: ext4
device: my_alias.1
cmd: mkfs -t %(filesystem)s -L %(label)s %(device)s
- label: fs2
device: my_alias.2
filesystem: ext4
- label: swap
device: swap_disk.1
filesystem: swap
- label: fs3
device: /dev/sddl
filesystem: ext4
mounts:
- ["my_alias.1", "/mntl1"]
- ["my_alias.2", "/mnt2"]
- ["swap_disk.1", "none", "swap", "sw", "0", "0"]
- ["/dev/sdd1", "/mnt3"]

Fan

Configure ubuntu fan networking

Summary
This module installs, configures and starts the ubuntu fan network system. For more information about Ubuntu Fan,
see: https://wiki.ubuntu.com/FanNetworking
If cloud-init sees a fan entry in cloud-config it will:

* write config_path with the contents of the config key

» install the package ubuntu-fan if it is not installed

* ensure the service is started (or restarted if was previously running)
Additionally, the ubuntu-fan package will be automatically installed if not present.
Internal name: cc_fan
Module frequency: once-per-instance
Supported distros: ubuntu

Activate only on keys: fan

92 Chapter 2. Project and community

cloud-init, Release 24.1.3

Config schema

« fan: (object)
— config: (string) The fan configuration to use as a single multi-line string

— config_path: (string) The path to write the fan configuration to. Default: /etc/network/fan

Examples

--- Examplel ---

fan:
config: |

config_path: /etc/network/fan

Final Message

Output final message when cloud-init has finished

Summary
This module configures the final message that cloud-init writes. The message is specified as a jinja template with the
following variables set:

e version: cloud-init version

e timestamp: time at cloud-init finish

* datasource: cloud-init data source

* uptime: system uptime

This message is written to the cloud-init log (usually /var/log/cloud-init.log) as well as stderr (which usually redirects
to /var/log/cloud-init-output.log).

Upon exit, this module writes the system uptime, timestamp, and cloud-init version to /var/lib/cloud/instance/
boot-finished independent of any user data specified for this module.

Internal name: cc_final_message
Module frequency: always

Supported distros: all

2.4. Reference 93

cloud-init, Release 24.1.3

Config schema

* final_message: (string) The message to display at the end of the run

Examples

--- Examplel ---

final_message: |

Growpart

Grow partitions

Summary

Growpart resizes partitions to fill the available disk space. This is useful for cloud instances with a larger amount of
disk space available than the pristine image uses, as it allows the instance to automatically make use of the extra space.
Note that this only works if the partition to be resized is the last one on a disk with classic partitioning scheme (MBR,
BSD, GPT). LVM, Btrfs and ZFS have no such restrictions.

The devices on which to run growpart are specified as a list under the devices key.

There is some functionality overlap between this module and the growroot functionality of
cloud-initramfs-tools. However, there are some situations where one tool is able to function and the
other is not. The default configuration for both should work for most cloud instances. To explicitly prevent
cloud-initramfs-tools from running growroot, the file /etc/growroot-disabled can be created. By default,
both growroot and cc_growpart will check for the existence of this file and will not run if it is present. However,
this file can be ignored for cc_growpart by setting ignore_growroot_disabled to true. For more information
on cloud-initramfs-tools see: https://launchpad.net/cloud-initramfs-tools

On FreeBSD, there is also the growfs service, which has a lot of overlap with cc_growpart and cc_resizefs, but
only works on the root partition. In that configuration, we use it, otherwise, we fall back to gpart.

Note however, that growfs may insert a swap partition, if none is present, unless instructed not to via
growfs_swap_size=0 in either kenv (1), or rc.conf(5).

Growpart is enabled by default on the root partition. The default config for growpart is:

growpart:
mode: auto
devices: ["/"]
ignore_growroot_disabled: false

Internal name: cc_growpart
Module frequency: always

Supported distros: all

94 Chapter 2. Project and community

https://launchpad.net/cloud-initramfs-tools

cloud-init, Release 24.1.3

Config schema

* growpart: (object)
— mode: (auto/growpart/gpart/off/false) The utility to use for resizing. Default: auto

Possible options:
% auto - Use any available utility
% growpart - Use growpart utility
% gpart - Use BSD gpart utility
off - Take no action.

Changed in version 22.3. Specifying a boolean "false **value for “'mode ""is deprecated. Use *off "instead.

— devices: (array of string) The devices to resize. Each entry can either be the path to the device’s mountpoint
in the filesystem or a path to the block device in ‘/dev’. Default: [/]

— ignore_growroot_disabled: (boolean) If true, ignore the presence of /etc/growroot-disabled. If
false and the file exists, then don’t resize. Default: false

Examples

--- Examplel ---

growpart:
mode: auto
devices: ["/"]
ignore_growroot_disabled: false

--- Example2 ---

growpart:
mode: growpart
devices:
"y
- "/dev/vdb1l"
ignore_growroot_disabled: true

Grub Dpkg

Configure grub debconf installation device

2.4. Reference 95

cloud-init, Release 24.1.3

Summary

Configure which device is used as the target for grub installation. This module can be enabled/disabled using the
enabled config key in the grub_dpkg config dict. This module automatically selects a disk using grub-probe if no
installation device is specified.

The value which is placed into the debconf database is in the format which the grub postinstall script expects. Normally,
this is a /dev/disk/by-id/ value, but we do fallback to the plain disk name if a by-id name is not present.

If this module is executed inside a container, then the debconf database is seeded with empty values, and in-
stall_devices_empty is set to true.

Internal name: cc_grub_dpkg
Module frequency: once-per-instance

Supported distros: ubuntu, debian

Config schema

* grub_dpkg: (object)

enabled: (boolean) Whether to configure which device is used as the target for grub installation. Default:
true

— grub-pc/install_devices: (string) Device to use as target for grub installation. If unspecified, grub-probe
of /boot will be used to find the device

— grub-pc/install_devices_empty: (boolean/string) Sets values for grub-pc/install_devices_empty.
If unspecified, will be set to true if grub-pc/install_devices is empty, otherwise false.

Changed in version 22.3. Use a boolean value instead.

— grub-efi/install_devices: (string) Partition to use as target for grub installation. If unspecified,
grub-probe of /boot/efi will be used to find the partition

* grub-dpkg: (object) An alias for grub_dpkg
Deprecated in version 22.2. Use “‘grub_dpkg ' instead.

Examples

--- Examplel ---

grub_dpkg:
enabled: true
BIOS mode (install_devices needs disk)
grub-pc/install_devices: /dev/sda
grub-pc/install_devices_empty: false
EFI mode (install_devices needs partition)
grub-efi/install_devices: /dev/sda

96 Chapter 2. Project and community

cloud-init, Release 24.1.3

Install Hotplug

Install hotplug udev rules if supported and enabled

Summary
This module will install the udev rules to enable hotplug if supported by the datasource and enabled in the userdata.
The udev rules will be installed as /etc/udev/rules.d/90-cloud-init-hook-hotplug.rules.

When hotplug is enabled, newly added network devices will be added to the system by cloud-init. After udev detects
the event, cloud-init will refresh the instance metadata from the datasource, detect the device in the updated metadata,
then apply the updated network configuration.

Currently supported datasources: Openstack, EC2
Internal name: cc_install_hotplug
Module frequency: once-per-instance

Supported distros: all

Config schema

* updates: (object)
— network: (object)

* when: (array of string)

Examples

--- Examplel ---

Enable hotplug of network devices
updates:
network:
when: ["hotplug"]

--- Example2 ---

Enable network hotplug alongside boot event
updates:
network:
when: ["boot", "hotplug"]

2.4. Reference 97

cloud-init, Release 24.1.3

Keyboard

Set keyboard layout

Summary

Handle keyboard configuration.
Internal name: cc_keyboard
Module frequency: once-per-instance

Supported distros: alpine, arch, debian, ubuntu, almalinux, amazon, azurelinux, centos, cloudlinux, eurolinux, fedora,
mariner, miraclelinux, openmandriva, photon, rhel, rocky, virtuozzo, opensuse, opensuse-leap, opensuse-microos,
opensuse-tumbleweed, sle_hpc, sle-micro, sles, suse

Activate only on keys: keyboard

Config schema

* keyboard: (object)

layout: (string) Required. Keyboard layout. Corresponds to XKBLAYOUT.

model: (string) Optional. Keyboard model. Corresponds to XKBMODEL. Default: pc105.

variant: (string) Required for Alpine Linux, optional otherwise. Keyboard variant. Corresponds to XKB-
VARIANT.

options: (string) Optional. Keyboard options. Corresponds to XKBOPTIONS.

Examples

--- Examplel ---

" "

Set keyboard layout to 'us

keyboard:
layout: us
--- Example2 ---

Set specific keyboard layout, model, variant, options
keyboard:

layout: de

model: pcl0O5

variant: nodeadkeys

options: compose:rwin

--- Example3 ---

For Alpine Linux set specific keyboard layout and variant,
as used by setup-keymap. Model and options are ignored.
keyboard:

layout: gb

variant: gb-extd

98 Chapter 2. Project and community

cloud-init, Release 24.1.3

Keys to Console

Control which SSH host keys may be written to console

Summary

For security reasons it may be desirable not to write SSH host keys and their fingerprints to the console. To avoid either
being written to the console the emit_keys_to_console config key under the main ssh config key can be used. To
avoid the fingerprint of types of SSH host keys being written to console the ssh_fp_console_blacklist config key
can be used. By default, all types of keys will have their fingerprints written to console. To avoid host keys of a key
type being written to console the “ssh_key_console_blacklist™ config key can be used. By default all supported host
keys are written to console.

Internal name: cc_keys_to_console
Module frequency: once-per-instance

Supported distros: all

Config schema

* ssh: (object)
— emit_keys_to_console: (boolean) Set false to avoid printing SSH keys to system console. Default: true.
« ssh_key_console_blacklist: (array of string) Avoid printing matching SSH key types to the system console.

 ssh_fp_console_blacklist: (array of string) Avoid printing matching SSH fingerprints to the system console.

Examples

--- Examplel ---

Do not print any SSH keys to system console
ssh:
emit_keys_to_console: false

--- Example2 ---

Do not print certain ssh key types to console
ssh_key_console_blacklist: [rsa]

--- Example3 ---

Do not print specific ssh key fingerprints to console
ssh_£fp_console_blacklist:

- E25451E0221B5773DEBFF178ECDACB160995AA89

- FE76292D55E8B28EE6DB2B34B2D8A784F8COAABO

2.4. Reference 99

cloud-init, Release 24.1.3

Landscape

Install and configure landscape client

Summary

This module installs and configures landscape-client. The landscape client will only be installed if the key
landscape is present in config. Landscape client configuration is given under the client key under the main
landscape config key. The config parameters are not interpreted by cloud-init, but rather are converted into a Con-
figObj formatted file and written out to the [client] section in /etc/landscape/client.conf.

The following default client config is provided, but can be overridden:

landscape:
client:
log_level: "info"
url: "https://landscape.canonical.com/message-system"
ping_url: "http://landscape.canoncial.com/ping"
data_path: "/var/lib/landscape/client"

Note: see landscape documentation for client config keys

Note: if tags is defined, its contents should be a string delimited with , rather than a list

Internal name: cc_landscape
Module frequency: once-per-instance
Supported distros: ubuntu

Activate only on keys: landscape

Config schema

* landscape: (object)
— client: (object)

% url: (string) The Landscape server URL to connect to. Default: https://landscape.canonical.
com/message-systenm.

% ping_url: (string) The URL to perform lightweight exchange initiation with. Default: https://
landscape.canonical.com/ping.

% data_path: (string) The directory to store data files in. Default: /var/lib/land-scape/client/.
* log_level: (debug/info/warning/error/critical) The log level for the client. Default: info.

computer_title: (string) The title of this computer.

% account_name: (string) The account this computer belongs to.

* registration_key: (string) The account-wide key used for registering clients.

% tags: (string) Comma separated list of tag names to be sent to the server.

100 Chapter 2. Project and community

cloud-init, Release 24.1.3

http_proxy: (string) The URL of the HTTP proxy, if one is needed.
https_proxy: (string) The URL of the HTTPS proxy, if one is needed.

Examples

--- Examplel ---

To discover additional supported client keys, run

man landscape-config.

landscape:

client:

url: "https://landscape.canonical.com/message-system"
ping_url: "http://landscape.canonical.com/ping"
data_path: "/var/lib/landscape/client"
http_proxy: "http://my.proxy.com/foobar"
https_proxy: "https://my.proxy.com/foobar"
tags: "server,cloud"
computer_title: "footitle"
registration_key: "fookey"
account_name: "fooaccount"

--- Example2 ---
Minimum viable config requires account_name and computer_title
landscape:
client:
computer_title: kiosk 1
account_name: Joe's Biz

--- Example3 ---

To install landscape-client from a PPA, specify apt.sources

apt:
sources:
trunk-testing-ppa:
source: ppa:landscape/self-hosted-beta
landscape:
client:

account_name: myaccount
computer_title: himom

2.4. Reference

101

cloud-init, Release 24.1.3

Locale

Set system locale

Summary

Configure the system locale and apply it system wide. By default use the locale specified by the datasource.
Internal name: cc_locale
Module frequency: once-per-instance

Supported distros: all

Config schema

* locale: (string) The locale to set as the system’s locale (e.g. ar_PS)

* locale_configfile: (string) The file in which to write the locale configuration (defaults to the distro’s default

location)
Examples
--- Examplel ---

Set the locale to ar_AE
locale: ar_AE

--- Example2 ---
Set the locale to fr_CA in /etc/alternate_path/locale

locale: fr_CA
locale_configfile: /etc/alternate_path/locale

LXD

Configure LXD with 1xd init and optionally 1xd-bridge

Summary

This module configures 1xd with user specified options using 1xd init. If Ixd is not present on the system but Ixd
configuration is provided, then Ixd will be installed. If the selected storage backend userspace utility is not installed, it
will be installed. If network bridge configuration is provided, then Ixd-bridge will be configured accordingly.

Internal name: cc_1xd
Module frequency: once-per-instance
Supported distros: ubuntu

Activate only on keys: 1xd

102 Chapter 2. Project and community

cloud-init, Release 24.1.3

Config schema

* Ixd: (object)

— init: (object) LXD init configuration values to provide to Ixd init —auto command. Can not be combined
with 1xd.preseed.

*k

*

*

*k

%

*

*k

network_address: (string) IP address for LXD to listen on

network_port: (integer) Network port to bind LXD to.

storage_backend: (zfs/dir/1lvm/btrfs) Storage backend to use. Default: dir.
storage_create_device: (string) Setup device based storage using DEVICE
storage_create_loop: (integer) Setup loop based storage with SIZE in GB
storage_pool: (string) Name of storage pool to use or create

trust_password: (string) The password required to add new clients

— bridge: (object) LXD bridge configuration provided to setup the host 1xd bridge. Can not be combined
with 1xd.preseed.

*

*

*

mode: (none/existing/new) Whether to setup LXD bridge, use an existing bridge by name or create
a new bridge. none will avoid bridge setup, existing will configure 1xd to use the bring matching name
and new will create a new bridge.

name: (string) Name of the LXD network bridge to attach or create. Default: 1xdbr®.
mtu: (integer) Bridge MTU, defaults to LXD’s default value
ipv4_address: (string) IPv4 address for the bridge. If set, ipv4_netmask key required.

ipv4_netmask: (integer) Prefix length for the ipv4_address key. Required when ipv4_address is
set.

ipv4_dhcp_first: (string) First IPv4 address of the DHCP range for the network created. This value
will combined with ipv4_dhcp_last key to set LXC ipv4.dhcp.ranges.

ipv4_dhep_last: (string) Last IPv4 address of the DHCP range for the network created. This value
will combined with ipv4_dhcp_first key to set LXC ipv4.dhcp.ranges.

ipv4_dhcp_leases: (integer) Number of DHCP leases to allocate within the range. Automatically
calculated based on ipv4_dhcp_first and ipv4_dhcp_last when unset.

ipv4_nat: (boolean) Set true to NAT the IPv4 traffic allowing for a routed IPv4 network. Default:
false.

ipv6_address: (string) IPv6 address for the bridge (CIDR notation). When set, ipv6_netmask key
is required. When absent, no IPv6 will be configured.

ipv6_netmask: (integer) Prefix length for ipv6_address provided. Required when ipv6_address
is set.

ipv6_nat: (boolean) Whether to NAT. Default: false.

domain: (string) Domain to advertise to DHCP clients and use for DNS resolution.

— preseed: (string) Opaque LXD preseed YAML config passed via stdin to the command: 1xd init —preseed.

See:

https://documentation.ubuntu.com/Ixd/en/latest/howto/initialize/#non-interactive-configuration or

Ixd init —dump for viable config. Can not be combined with either 1xd.init or 1xd.bridge.

2.4. Reference 103

https://documentation.ubuntu.com/lxd/en/latest/howto/initialize/#non-interactive-configuration

cloud-init, Release 24.1.3

Examples

--- Examplel ---

Simplest working directory backed LXD configuration
1xd:
init:
storage_backend: dir

--- Example2 ---

LXD init showcasing cloud-init's LXD config options
1xd:
init:
network_address: 0.0.0.0
network_port: 8443
storage_backend: zfs
storage_pool: datapool
storage_create_loop: 10

bridge:
mode: new
mtu: 1500

name: 1xdbr0®
ipv4_address: 10.0.8.1
ipv4_netmask: 24
ipv4_dhcp_first: 10.0.8.2
ipv4_dhcp_last: 10.0.8.3
ipv4_dhcp_leases: 250
ipv4_nat: true
ipv6_address: £d98:9e0:3744::1
ipv6_netmask: 64
ipv6_nat: true

domain: 1xd

--- Example3 ---

For more complex non-iteractive LXD configuration of networks,
storage_pools, profiles, projects, clusters and core config,
“1xd:preseed’ config will be passed as stdin to the command:
1xd init --preseed
See https://documentation.ubuntu.com/lxd/en/latest/howto/initialize/#non-interactive-
—sconfiguration or
run: lxd init --dump to see viable preseed YAML allowed.
#
Preseed settings configuring the LXD daemon for HTTPS connections
on 192.168.1.1 port 9999, a nested profile which allows for
LXD nesting on containers and a limited project allowing for
RBAC approach when defining behavior for sub projects.
1xd:
preseed: |
config:
core.https_address: 192.168.1.1:9999
networks:

(continues on next page)

104 Chapter 2. Project and community

cloud-init, Release 24.1.3

- config:
ipv4.address: 10.42.42.1/24
ipv4.nat: true
ipv6.address: fd42:4242:4242:4242::1/64
ipv6.nat: true
description: ""
name: lxdbr0®
type: bridge
project: default
storage_pools:
- config:
size: 5GiB
source: /var/snap/lxd/common/lxd/disks/default.img
description: ""
name: default
driver: zfs
profiles:
- config: {}
description: Default LXD profile
devices:
ethO:
name: eth®
network: 1xdbr®

type: nic
root:
path: /
pool: default
type: disk
name: default
- config: {}
security.nesting: true
devices:
eth®:

name: eth0®
network: 1xdbr0®

type: nic
root:
path: /
pool: default
type: disk
name: nested
projects:
- config:

features.images: true
features.networks: true
features.profiles: true
features.storage.volumes: true
description: Default LXD project
name: default
- config:
features.images: false
features.networks: true

(continued from previous page)

(continues on next page)

2.4. Reference

105

cloud-init, Release 24.1.3

(continued from previous page)

Mcollective

Install, configure and start mcollective

Summary

This module installs, configures and starts mcollective. If the mcollective key is present in config, then mcollective
will be installed and started.

Configuration for mcollective can be specified in the conf key under mcollective. Each config value consists
of a key value pair and will be written to /etc/mcollective/server.cfg. The public-cert and private-cert
keys, if present in conf may be used to specify the public and private certificates for mcollective. Their values will be
written to /etc/mcollective/ssl/server-public.pemand /etc/mcollective/ssl/server-private.pem.

Note: The ec2 metadata service is readable by non-root users. If security is a concern, use include-once and ssl urls.

Internal name: cc_mcollective
Module frequency: once-per-instance
Supported distros: all

Activate only on keys: mcollective

Config schema

* mcollective: (object)
— conf: (object)

% public-cert: (string) Optional value of server public certificate which will be written to /etc/
mcollective/ssl/server-public.pem

% private-cert: (string) Optional value of server private certificate which will be written to /etc/
mcollective/ssl/server-private.pem

% M +$: (boolean/integer/string) Optional config key: value pairs which will be appended to /etc/
mcollective/server.cfg.

106 Chapter 2. Project and community

cloud-init, Release 24.1.3

Examples

--- Examplel ---

Provide server private and public key and provide the following
config settings in /etc/mcollective/server.cfg:

loglevel: debug

plugin.stomp.host: dbhost

WARNING WARNING WARNING

The ec2 metadata service is a network service, and thus is

readable by non-root users on the system

(ie: 'ec2metadata --user-data')

If you want security for this, please use include-once + SSL urls
mcollective:

conf:
loglevel: debug
plugin.stomp.host: dbhost
public-cert: |

private-cert: |

Mounts

Configure mount points and swap files

Summary

This module can add or remove mountpoints from /etc/fstab as well as configure swap. The mounts config key takes
a list of fstab entries to add. Each entry is specified as a listof [fs_spec, fs_file, fs_vfstype, fs_mntops,
fs-freq, fs_passno]. For more information on these options, consult the manual for /etc/fstab. When speci-
fying the fs_spec, if the device name starts with one of xvd, sd, hd, or vd, the leading /dev may be omitted.

Any mounts that do not appear to either an attached block device or network resource will be skipped with a log like
“Ignoring nonexistent mount ...”.

Cloud-init will attempt to add the following mount directives if available and unconfigured in /etc/fstab:

mounts:

- ["ephemeral®", "/mnt", "auto","defaults,nofail,x-systemd.requires=cloud-init.
—service", "0", "2"]

- ["swap", "none", "swap", "sw", "0", "0"]

In order to remove a previously listed mount, an entry can be added to the mounts list containing fs_spec for the
device to be removed but no mountpoint (i.e. [swap] or [swap, null]).

The mount_default_fields config key allows default values to be specified for the fields in a mounts entry that are
not specified, aside from the £s_spec and the fs_file fields. If specified, this must be a list containing 6 values. It

2.4. Reference 107

cloud-init, Release 24.1.3

defaults to:

mount_default_fields: [none, none, "auto","defaults,nofail,x-systemd.requires=cloud-init.
—service", "0", "2"]

Non-systemd init systems will vary in mount_default_fields.

Swap files can be configured by setting the path to the swap file to create with filename, the size of the swap file with
size maximum size of the swap file if using an size: auto with maxsize. By default no swap file is created.

Note: If multiple mounts are specified where a subsequent mount’s mountpoint is inside of a previously declared
mount’s mountpoint (i.e. the 1st mount has a mountpoint of /abc and the 2nd mount has a mountpoint of /abc/def)
then this will not work as expected - cc_mounts first creates the directories for all the mountpoints before it starts to
perform any mounts and so the sub-mountpoint directory will not be created correctly inside the parent mountpoint.

For systems using util-linux’s mount program this issue can be worked around by specifying X-mount .mkdir as part
of a fs_mntops value for the subsequent mount entry.

Internal name: cc_mounts
Module frequency: once-per-instance

Supported distros: all

Config schema

e mounts: (array of array) List of lists. Each inner list entry is a list of /etc/fstab mount declarations of the
format: [fs_spec, fs_file, fs_vfstype, fs_mntops, fs-freq, fs_passno]. A mount declaration with less than 6 items
will get remaining values from mount_default_fields. A mount declaration with only fs_spec and no fs_file
mountpoint will be skipped.

* mount_default_fields: (array of (string/null)) Default mount configuration for any mount entry with less than 6
options provided. When specified, 6 items are required and represent /etc/fstab entries. Default: defaults,
nofail,x-systemd.requires=cloud-init.service,_netdev

* swap: (object)
— filename: (string) Path to the swap file to create

— size: (auto/integer/string) The size in bytes of the swap file, ‘auto’ or a human-readable size abbreviation
of the format <float_size><units> where units are one of B, K, M, G or T. WARNING: Attempts to use
IEC prefixes in your configuration prior to cloud-init version 23.1 will result in unexpected behavior.
SI prefixes names (KB, MB) are required on pre-23.1 cloud-init, however IEC values are used. In
summary, assume 1KB == 1024B, not 1000B

— maxsize: (integer/string) The maxsize in bytes of the swap file

108 Chapter 2. Project and community

cloud-init, Release 24.1.3

Examples

--- Examplel ---

Mount ephemeral® with "noexec" flag, /dev/sdc with mount_default_fields,
and /dev/xvdh with custom fs_passno "0" to avoid fsck on the mount.

Also provide an automatically sized swap with a max size of 10485760

bytes.

mounts:

- [/dev/ephemeral®, /mnt, auto, "defaults,noexec"]

- [sdc, /opt/data]

- [xvdh, /opt/data, auto, "defaults,nofail"”, "0", "0"]
mount_default_fields: [None, None, auto, "defaults,nofail", "0", "2"]
swap:

filename: /my/swapfile

size: auto

maxsize: 10485760

--- Example2 ---

Create a 2 GB swap file at /swapfile using human-readable values
swap:

filename: /swapfile

size: 2G

maxsize: 2G

NTP

enable and configure ntp

Summary

Handle ntp configuration. If ntp is not installed on the system and ntp configuration is specified, ntp will be installed.
If there is a default ntp config file in the image or one is present in the distro’s ntp package, it will be copied to a
file with .dist appended to the filename before any changes are made. A list of ntp pools and ntp servers can be
provided under the ntp config key. If no ntp servers or pools are provided, 4 pools will be used in the format
{0-3}.{distro}.pool.ntp.org.

Internal name: cc_ntp
Module frequency: once-per-instance

Supported distros: almalinux, alpine, azurelinux, centos, cloudlinux, cos, debian, eurolinux, fedora, freebsd, mariner,
miraclelinux, openbsd, openeuler, OpenCloudOS, openmandriva, opensuse, opensuse-microos, opensuse-tumbleweed,
opensuse-leap, photon, rhel, rocky, sle_hpc, sle-micro, sles, TencentOS, ubuntu, virtuozzo

Activate only on keys: ntp

2.4. Reference 109

cloud-init, Release 24.1.3

Config schema

* ntp: (null/object)

— pools: (array of string) List of ntp pools. If both pools and servers are empty, 4 default pool servers will
be provided of the format {0-3}.{distro}.pool.ntp.org. NOTE: for Alpine Linux when using the
Busybox NTP client this setting will be ignored due to the limited functionality of Busybox’s ntpd.

— servers: (array of string) List of ntp servers. If both pools and servers are empty, 4 default pool servers
will be provided with the format {0-3}.{distro}.pool.ntp.org.

— peers: (array of string) List of ntp peers.
— allow: (array of string) List of CIDRs to allow

— ntp_client: (string) Name of an NTP client to use to configure system NTP. When unprovided or ‘auto’ the
default client preferred by the distribution will be used. The following built-in client names can be used to
override existing configuration defaults: chrony, ntp, openntpd, ntpdate, systemd-timesyncd.

— enabled: (boolean) Attempt to enable ntp clients if set to True. If set to False, ntp client will not be
configured or installed

— config: (object) Configuration settings or overrides for the ntp_client specified.
* confpath: (string) The path to where the ntp_client configuration is written.

% check_exe: (string) The executable name for the ntp_client. For example, ntp service check_exe
is ‘ntpd’ because it runs the ntpd binary.

% packages: (array of string) List of packages needed to be installed for the selected ntp_client.

% service_name: (string) The systemd or sysvinit service name used to start and stop the ntp_client
service.

% template: (string) Inline template allowing users to customize their ntp_client configuration with
the use of the Jinja templating engine. The template content should start with ## template:jinja.
Within the template, you can utilize any of the following ntp module config keys: servers, pools,
allow, and peers. Each cc_ntp schema config key and expected value type is defined above.

Examples

--- Examplel ---

Override ntp with chrony configuration on Ubuntu
ntp:
enabled: true
ntp_client: chrony # Uses cloud-init default chrony configuration

--- Example2 ---

Provide a custom ntp client configuration
ntp:
enabled: true
ntp_client: myntpclient
config:
confpath: /etc/myntpclient/myntpclient.conf
check_exe: myntpclientd
packages:
(continues on next page)

110 Chapter 2. Project and community

cloud-init, Release 24.1.3

(continued from previous page)

- myntpclient
service_name: myntpclient
template: |

pools: [0.int.pool.ntp.org, 1.int.pool.ntp.org, ntp.myorg.org]
servers:
- ntp.server.local
- ntp.ubuntu.com
- 192.168.23.2
allow:
- 192.168.23.0/32
peers:
- km0O1
- km002

Package Update Upgrade Install

Update, upgrade, and install packages

Summary

This module allows packages to be updated, upgraded or installed during boot. If any packages are to be installed or an
upgrade is to be performed then the package cache will be updated first. If a package installation or upgrade requires a
reboot, then a reboot can be performed if package_reboot_if_required is specified.

Internal name: cc_package_update_upgrade_install
Module frequency: once-per-instance
Supported distros: all

Activate only on keys: apt_update, package_update, apt_upgrade, package_upgrade, packages

2.4. Reference 111

cloud-init, Release 24.1.3

Config schema

packages: (array of (string/array/object)) An array containing either a package specification, or an object con-
sisting of a package manager key having a package specification value . A package specification can be either
a package name or a list with two entries, the first being the package name and the second being the specific
package version to install.

— Each object in packages list supports the following keys:

— apt: (array of (array of string/string))

— snap: (array of (array of string/string))
package_update: (boolean) Set true to update packages. Happens before upgrade or install. Default: false
package_upgrade: (boolean) Set true to upgrade packages. Happens before install. Default: false

package_reboot_if required: (boolean) Set true to reboot the system if required by presence of
Nvar/run/reboot-required. Default: false

apt_update: (boolean) Default: false.

Deprecated in version 22.2. Use ‘package_update *" instead.
apt_upgrade: (boolean) Default: false.

Deprecated in version 22.2. Use ‘‘package_upgrade " instead.
apt_reboot_if_required: (boolean) Default: false.

Deprecated in version 22.2. Use *package_reboot_if required " instead.

Examples

--- Examplel ---

packages:

pwgen

pastebinit

[libpython3.8, 3.8.10-Oubuntul~20.04.2]
snap:

- certbot

- [juju, --edgel

- [1xd, --channel=5.15/stable]

apt:

- mg

package_update: true
package_upgrade: true
package_reboot_if_required: true

112

Chapter 2. Project and community

cloud-init, Release 24.1.3

Phone Home

Post data to url

Summary

This module can be used to post data to a remote host after boot is complete. If the post url contains the string
$INSTANCE_ID it will be replaced with the id of the current instance. Either all data can be posted or a list of keys to
post. Available keys are:

e pub_key_rsa
¢ pub_key_ecdsa
e pub_key_ed25519
e instance_id
* hostname
e fdgn
Data is sent as x-www-form-urlencoded arguments.

Example HTTP POST:

POST / HTTP/1.1

Content-Length: 1337

User-Agent: Cloud-Init/21.4

Accept-Encoding: gzip, deflate

Accept: */*

Content-Type: application/x-www-form-urlencoded

pub_key_rsa-rsa_contents&pub_key_ecdsa-ecdsa_contents&pub_key_ed25519=ed25519_contents&
—.instance_id=i-87018aed&hostname=myhost&fqdn-myhost.internal

Internal name: cc_phone_home
Module frequency: once-per-instance
Supported distros: all

Activate only on keys: phone_home

Config schema

* phone_home: (object)
— url: (string) The URL to send the phone home data to.
— post: (all/array) A list of keys to post or all. Default: all

— tries: (integer) The number of times to try sending the phone home data. Default: 10

2.4. Reference 113

cloud-init, Release 24.1.3

Examples
--- Examplel ---
phone_home:
url: http://example.com/$INSTANCE_ID/
post: all
--- Example2 ---
phone_home:
url: http://example.com/$INSTANCE_ID/
post:
- pub_key_rsa

- pub_key_ecdsa
- pub_key_ed25519
- instance_id
- hostname
- fqdn
tries: 5

Power State Change

Change power state

Summary

This module handles shutdown/reboot after all config modules have been run. By default it will take no action, and the
system will keep running unless a package installation/upgrade requires a system reboot (e.g. installing a new kernel)
and package_reboot_if_required is true.

Using this module ensures that cloud-init is entirely finished with modules that would be executed.
An example to distinguish delay from timeout:

If you delay 5 (5 minutes) and have a timeout of 120 (2 minutes), then the max time until shutdown will be 7 minutes,
though it could be as soon as 5 minutes. Cloud-init will invoke ‘shutdown +5° after the process finishes, or when
‘timeout’ seconds have elapsed.

Note: With Alpine Linux any message value specified is ignored as Alpine’s halt, poweroff, and reboot commands do
not support broadcasting a message.

Internal name: cc_power_state_change
Module frequency: once-per-instance
Supported distros: all

Activate only on keys: power_state

114 Chapter 2. Project and community

cloud-init, Release 24.1.3

Config schema

* power_state: (object)

— delay: (integer/string/now) Time in minutes to delay after cloud-init has finished. Can be now or an integer
specifying the number of minutes to delay. Default: now.

Changed in version 22.3. Use of type string for this value is deprecated. Use “‘now " or integer type.
— mode: (poweroff/reboot/halt) Must be one of poweroff, halt, or reboot.
— message: (string) Optional message to display to the user when the system is powering off or rebooting.

— timeout: (integer) Time in seconds to wait for the cloud-init process to finish before executing shutdown.
Default: 30

— condition: (string/boolean/array) Apply state change only if condition is met. May be boolean true (always
met), false (never met), or a command string or list to be executed. For command formatting, see the
documentation for cc_runcmd. If exit code is 0, condition is met, otherwise not. Default: true

Examples

--- Examplel ---

power_state:
delay: now
mode: poweroff
message: Powering off
timeout: 2
condition: true

--- Example2 ---

power_state:
delay: 30
mode: reboot
message: Rebooting machine
condition: test -f /var/tmp/reboot_me

Puppet

Install, configure and start puppet

Summary

This module handles puppet installation and configuration. If the puppet key does not exist in global configuration, no
action will be taken. If a config entry for puppet is present, then by default the latest version of puppet will be installed.
If the puppet config key exists in the config archive, this module will attempt to start puppet even if no installation was
performed.

The module also provides keys for configuring the new puppet 4 paths and installing the puppet package from the pup-
petlabs repositories: https://docs.puppet.com/puppet/4.2/reference/whered_it_go.html The keys are package_name,
conf_file, ssl_dir and csr_attributes_path. If unset, their values will default to ones that work with puppet
3.x and with distributions that ship modified puppet 4.x that uses the old paths.

2.4. Reference 115

https://docs.puppet.com/puppet/4.2/reference/whered_it_go.html

cloud-init, Release 24.1.3

Internal name: cc_puppet
Module frequency: once-per-instance
Supported distros: all

Activate only on keys: puppet

Config schema

* puppet: (object)

— install: (boolean) Whether or not to install puppet. Setting to false will result in an error if puppet is not
already present on the system. Default: true

— version: (string) Optional version to pass to the installer script or package manager. If unset, the latest
version from the repos will be installed.

— install_type: (packages/aio) Valid values are packages and aio. Agent packages from the puppetlabs
repositories can be installed by setting aio. Based on this setting, the default config/SSL/CSR paths will
be adjusted accordingly. Default: packages

— collection: (string) Puppet collection to install if install_type is aio. This can be set to one of puppet
(rolling release), puppet6, puppet7 (or their nightly counterparts) in order to install specific release
streams.

— aio_install_url: (string) If install_type is aio, change the url of the install script.

— cleanup: (boolean) Whether to remove the puppetlabs repo after installation if install_type is aio
Default: true

— conf_file: (string) The path to the puppet config file. Default depends on install_type

— ssl_dir: (string) The path to the puppet SSL directory. Default depends on install_type

— csr_attributes_path: (string) The path to the puppet csr attributes file. Default depends on install_type
— package_name: (string) Name of the package to install if install_type is packages. Default: puppet

— exec: (boolean) Whether or not to run puppet after configuration finishes. A single manual run can be
triggered by setting exec to true, and additional arguments can be passed to puppet agent via the
exec_args key (by default the agent will execute with the --test flag). Default: false

— exec_args: (array of string) A list of arguments to pass to ‘puppet agent’ if ‘exec’ is true Default:
['--test']

— start_service: (boolean) By default, the puppet service will be automatically enabled after installation and
set to automatically start on boot. To override this in favor of manual puppet execution set start_service
to false

— conf: (object) Every key present in the conf object will be added to puppet.conf. As such, section names
should be one of: main, server, agent or user and keys should be valid puppet configuration op-
tions. The configuration is specified as a dictionary containing high-level <section> keys and lists of
<key>=<value> pairs within each section. The certname key supports string substitutions for %i and %f£,
corresponding to the instance id and fqdn of the machine respectively.

ca_cert is a special case. It won’t be added to puppet.conf. It holds the puppetserver certificate in pem
format. It should be a multi-line string (using the | YAML notation for multi-line strings).

% main: (object)
% server: (object)

% agent: (object)

116 Chapter 2. Project and community

cloud-init, Release 24.1.3

% user: (object)
% ca_cert: (string)

— csr_attributes: (object) create a csr_attributes.yaml file for CSR attributes and certificate extension
requests. See https://puppet.com/docs/puppet/latest/config_file_csr_attributes.html

% custom_attributes: (object)

% extension_requests: (object)

Examples

--- Examplel ---

puppet:
install: true
version: "7.7.0"
install_type: "aio"
collection: "puppet7"
aio_install_url: 'https://git.io/JBhoQ’
cleanup: true
conf_file: "/etc/puppet/puppet.conf"
ssl_dir: "/var/lib/puppet/ssl”
csr_attributes_path: "/etc/puppet/csr_attributes.yaml"
exec: true
exec_args: ['--test']
conf:
agent:
server: "puppetserver.example.org"
certname: "%i.%f"
ca_cert: |

MIICCTCCAXKgAwIBAgIBATANBgkqhkiGOwOBAQUFADANMQswCQYDVQQDDAJjYTAe
FwOXMDAyMTUxNzI5MjFaFwOXNTAyMTQxNzI5MjFaMAOxCzAJBgNVBAMMAMNhMIGE
MAOGCSqGSIb3DQEBAQUAA4GNADCBiQKBgQCu7Q40sm47/E1Pf+r8AYb/V/FWGPgc
b0140mNoX7dgCxTDvps/h8Vw555PdAFsW5+QhsGr31IINI3kSYprFQcY£7A8tNWu
1MASW2C£aEiOEi9F1R3R4Q1z41ix+iNoHiUDT jazw/tZwEdxaQXQVLwgTGRwVa+aA
gbut JKi93MILLwWIDAQABo3kwdzA4BglghkgBhvhCAQOEKxYpUHVwWcGVOIFJ1Ynkv
T3B1b1NTTCBHZW51cmFOZWQgQ2VydGlmaWNhdGUwDwYDVROTAQH/BAUWAWEB/zAd
BgNVHQ4EFgQUu4+jHB+GYE5Vx0+0110Ahevsp jAwCwYDVROPBAQDAgEGMAOGCSqG
SIb3DQEBBQUAA4GBAH/rx1UI jwNb3n7TXJcDJ6MMHULwjr®3BDIXKb34Ulndkpaf
+GA1zPXWa7b0908MII8RnPfvtKnteLbvgTK+h+zX1XCty+S2EQWk29i2Adog0Txb
hppiGMpOtT5HavudaceCXiy2crVcudj3NFciy8X66SoECemW9UYDChIT5D0d

csr_attributes:
custom_attributes:
1.2.840.113549.1.9.7: 342thbjkt82094y0Outhhor289jnqthpc2290
extension_requests:
pp_uuid: ED803750-E3C7-44F5-BB08-41A04433FE2E
pp_image_name: my_ami_image
pp_preshared_key: 342thbjkt82094yQuthhor289jnqthpc2290

--- Example2 ---

(continues on next page)

2.4. Reference 117

https://puppet.com/docs/puppet/latest/config_file_csr_attributes.html

cloud-init, Release 24.1.3

(continued from previous page)

puppet:
install_type: "packages
package_name: "puppet”
exec: false

Resizefs

Resize filesystem

Summary

Resize a filesystem to use all available space on partition. This module is useful along with cc_growpart and will en-
sure that if the root partition has been resized the root filesystem will be resized along with it. By default, cc_resizefs
will resize the root partition and will block the boot process while the resize command is running. Optionally, the resize
operation can be performed in the background while cloud-init continues running modules. This can be enabled by
setting resize_rootfs to noblock. This module can be disabled altogether by setting resize_rootfs to false.

Internal name: cc_resizefs
Module frequency: always

Supported distros: all

Config schema

* resize_rootfs: (true/false/noblock) Whether to resize the root partition. noblock will resize in the back-
ground. Default: true

Examples

--- Examplel

resize_rootfs: false # disable root filesystem resize operation
--- Example2 ---

resize_rootfs: noblock # runs resize operation in the background

Resolv Conf

Configure resolv.conf

118 Chapter 2. Project and community

cloud-init, Release 24.1.3

Summary

Unless manually editing /etc/resolv. conf is the correct way to manage nameserver information on your operating
system, you do not want to use this module. Many distros have moved away from manually editing resolv.conf so
please verify that this is the preferred nameserver management method for your distro before using this module.

Note that using Network configuration is preferred, rather than using this module, when possible.

This module is intended to manage resolv.conf in environments where early configuration of resolv.conf is necessary
for further bootstrapping and/or where configuration management such as puppet or chef own DNS configuration.

When using a Config drive and a RHEL-like system, resolv.conf will also be managed automatically due to the available
information provided for DNS servers in the Networking config Version 2 format. For those that wish to have different
settings, use this module.

In order for the resolv_conf section to be applied, manage_resolv_conf must be set true.

Note: For Red Hat with sysconfig, be sure to set PEERDNS=no for all DHCP enabled NICs.

Internal name: cc_resolv_conf
Module frequency: once-per-instance

Supported distros: alpine, azurelinux, fedora, mariner, opensuse, opensuse-leap, opensuse-microos, opensuse-
tumbleweed, photon, rhel, sle_hpc, sle-micro, sles, openeuler

Activate only on keys: manage_resolv_conf

Config schema

* manage_resolv_conf: (boolean) Whether to manage the resolv.conf file. resolv_conf block will be ignored
unless this is set to true. Default: false

* resolv_conf: (object)

nameservers: (array) A list of nameservers to use to be added as nameserver lines

searchdomains: (array) A list of domains to be added search line

domain: (string) The domain to be added as domain line

sortlist: (array) A list of IP addresses to be added to sortlist line

options: (object) Key/value pairs of options to go under options heading. A unary option should be
specified as true

Examples

--- Examplel ---

manage_resolv_conf: true
resolv_conf:
nameservers:
- 8.8.8.8
- 8.8.4.4
searchdomains:
- foo.example.com

(continues on next page)

2.4. Reference 119

cloud-init, Release 24.1.3

(continued from previous page)

- bar.example.com
domain: example.com

sortlist:
- 10.0.0.1/255
- 10.0.0.2
options:
rotate: true
timeout: 1

Red Hat Subscription

Register Red Hat Enterprise Linux based system

Summary

Register a Red Hat system either by username and password or activation and org. Following a successful registration,

you can:

* auto-attach subscriptions

¢ set the service level

* add subscriptions based on pool id

* enable/disable yum repositories based on repo id

e alter the rhsm_baseurl and server-hostname in /etc/rhsm/rhs.conf.

Internal name: cc_rh_subscription

Module frequency: once-per-instance

Supported distros: fedora, rhel, openeuler

Activate only on keys: rh_subscription

Config schema

* rh_subscription: (object)

username: (string) The username to use. Must be used with password. Should not be used with
activation-key or org

password: (string) The password to use. Must be used with username. Should not be used with
activation-key or org

activation-key: (string) The activation key to use. Must be used with org. Should not be used with
username or password

org: (integer) The organization number to use. Must be used with activation-key. Should not be used
with username or password

auto-attach: (boolean) Whether to attach subscriptions automatically

service-level: (string) The service level to use when subscribing to RH repositories. auto-attach must
be true for this to be used

add-pool: (array of string) A list of pools ids add to the subscription

120

Chapter 2. Project and community

cloud-init, Release 24.1.3

enable-repo: (array of string) A list of repositories to enable

disable-repo: (array of string) A list of repositories to disable

rhsm-baseurl: (string) Sets the baseurl in /etc/rhsm/rhsm.conf

server-hostname: (string) Sets the serverurl in /etc/rhsm/rhsm.conf

Examples

--- Examplel ---

rh_subscription:
username: joe@foo.bar
Quote your password if it has symbols to be safe
password: '1234abcd’

--- Example2 ---

rh_subscription:
activation-key: foobar
org: 12345

--- Example3 ---

rh_subscription:
activation-key: foobar
org: 12345

auto-attach: true
service-level: self-support
add-pool:

- lalalalalalalalalalalalalalalala

- 2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b
enable-repo:

- repo-id-to-enable

- other-repo-id-to-enable
disable-repo:

- repo-id-to-disable

- other-repo-id-to-disable
Alter the baseurl in /etc/rhsm/rhsm.conf
rhsm-baseurl: http://url
Alter the server hostname in /etc/rhsm/rhsm.conf
server-hostname: foo.bar.com

2.4. Reference

121

cloud-init, Release 24.1.3

Rsyslog

Configure system logging via rsyslog

Summary

This module configures remote system logging using rsyslog.

Configuration for remote servers can be specified in configs, but for convenience it can be specified as key value pairs
in remotes.

This module can install rsyslog if not already present on the system using the install_rsyslog, packages, and
check_exe options. Installation may not work on systems where this module runs before networking is up.

Note: On BSD cloud-init will attempt to disable and stop the base system syslogd. This may fail on a first run. We
recommend creating images with service syslogd disable.

Internal name: cc_rsyslog
Module frequency: once-per-instance
Supported distros: all

Activate only on keys: rsyslog

Config schema

* rsyslog: (object)

— config_dir: (string) The directory where rsyslog configuration files will be written. Default: /etc/
rsyslog.d

— config_filename: (string) The name of the rsyslog configuration file. Default: 20-cloud-config.conf

— configs: (array of (string/object)) Each entry in configs is either a string or an object. Each config entry
contains a configuration string and a file to write it to. For config entries that are an object, filename
sets the target filename and content specifies the config string to write. For config entries that are only a
string, the string is used as the config string to write. If the filename to write the config to is not specified,
the value of the config_filename key is used. A file with the selected filename will be written inside the
directory specified by config_dir.

% Each object in configs list supports the following keys:
* filename: (string)
% content: (string)

— remotes: (object) Each key is the name for an rsyslog remote entry. Each value holds the contents of the
remote config for rsyslog. The config consists of the following parts:

% filter for log messages (defaults to *. *)

% optional leading @ or @@, indicating udp and tcp respectively (defaults to @, for udp)

% ipv4 or ipv6 hostname or address. ipv6 addresses must be in [::1] format, (e.g. @[£d00::1]:514)
% optional port number (defaults to 514)

This module will provide sane defaults for any part of the remote entry that is not specified, so in most
cases remote hosts can be specified just using <name>: <address>.

122 Chapter 2. Project and community

cloud-init, Release 24.1.3

— service_reload_command: (auto/array) The command to use to reload the rsyslog service after the config
has been updated. If this is set to auto, then an appropriate command for the distro will be used. This is the
default behavior. To manually set the command, use a list of command args (e.g. [systemctl, restart,
rsyslog]).

— install_rsyslog: (boolean) Install rsyslog. Default: false

— check_exe: (string) The executable name for the rsyslog daemon. For example, rsyslogd, or /opt/
sbin/rsyslogd if the rsyslog binary is in an unusual path. This is only used if install_rsyslog is
true. Default: rsyslogd

— packages: (array of string) List of packages needed to be installed for rsyslog. This is only used if
install_rsyslog is true. Default: [rsyslog]

Examples

--- Examplel ---

rsyslog:
remotes:
maas: 192.168.1.1
juju: 10.0.4.1
service_reload_command: auto

--- Example2 ---
rsyslog:

config_dir: /opt/etc/rsyslog.d
config_filename: 99-late-cloud-config.conf

configs:
- "%, * @@192.158.1.1"
- content: "*.* 0@192.0.2.1:10514"
filename: 0l-example.conf
- content: |
remotes:

maas: 192.168.1.1
juju: 10.0.4.1
service_reload_command: [your, syslog, restart, command]

--- Example3 ---

default (no) configuration with package installation on FreeBSD
rsyslog:

config_dir: /usr/local/etc/rsyslog.d

check_exe: "rsyslogd"

packages: ["rsyslogd"]

install_rsyslog: True

2.4. Reference 123

cloud-init, Release 24.1.3

Runcmd

Run arbitrary commands

Summary

Run arbitrary commands at a rc.local like time-frame with output to the console. Each item can be either a list or a

string. The item type affects how it is executed:

* If the item is a string, it will be interpreted by sh.

* If the item is a list, the items will be executed as if passed to execve(3) (with the first arg as the command).

Note that the runcmd module only writes the script to be run later. The module that actually runs the script is

scripts_user in the Final boot stage.

Note: all commands must be proper yaml, so you have to quote any characters yaml would eat (‘:* can be problematic)

Note: when writing files, do not use /tmp dir as it races with systemd-tmpfiles-clean LP: #1707222. Use /run/somedir

instead.

Internal name: cc_runcmd
Module frequency: once-per-instance
Supported distros: all

Activate only on keys: runcmd

Config schema

e runcmd: (array of (array of string/string/null))

Examples
--- Examplel ---
runcmd:

- [15’ _11 /:I

- [sh, -xc, "echo $(date) ': hello world!'"]
- [sh, -c, echo "=========hello world'

- 1s -1 /root

- [wget, "http://example.org"”, -0, /tmp/index.html]

124

Chapter 2. Project and community

cloud-init, Release 24.1.3

Salt Minion

Setup and run salt minion

Summary

This module installs, configures and starts salt minion. If the salt_minion key is present in the config parts, then salt
minion will be installed and started. Configuration for salt minion can be specified in the conf key under salt_minion.
Any conf values present there will be assigned in /etc/salt/minion. The public and private keys to use for salt
minion can be specified with public_key and private_key respectively. Optionally if you have a custom package
name, service name or config directory you can specify them with pkg_name, service_name and config_dir.

Salt keys can be manually generated by: salt-key --gen-keys=GEN_KEYS, where GEN_KEYS is the name of the
keypair, e.g. ‘minion’. The keypair will be copied to /etc/salt/pki on the minion instance.

Internal name: cc_salt_minion
Module frequency: once-per-instance
Supported distros: all

Activate only on keys: salt_minion

Config schema

* salt_minion: (object)
— pkg_name: (string) Package name to install. Default: salt-minion
— service_name: (string) Service name to enable. Default: salt-minion
— config_dir: (string) Directory to write config files to. Default: /etc/salt
— conf: (object) Configuration to be written to config_dir/minion
— grains: (object) Configuration to be written to config_dir/grains
— public_key: (string) Public key to be used by the salt minion
— private_key: (string) Private key to be used by salt minion

— pki_dir: (string) Directory to write key files. Default: config_dir/pki/minion

Examples

--- Examplel ---

salt_minion:
pkg_name: salt-minion
service_name: salt-minion
config_dir: /etc/salt
conf:
file_client: local
fileserver_backend:
- gitfs
gitfs_remotes:
- https://github.com/_user_/_repo_.git
(continues on next page)

2.4. Reference 125

cloud-init, Release 24.1.3

master: salt.example.com
grains:
role:
- web
public_key: |

private_key: |

pki_dir: /etc/salt/pki/minion

(continued from previous page)

Scripts Per Boot

Run per boot scripts

Summary

Any scripts in the scripts/per-boot directory on the datasource will be run every time the system boots. Scripts
will be run in alphabetical order. This module does not accept any config keys.

Internal name: cc_scripts_per_boot

Module frequency: always

Supporte